二次函数


二次函数
  [本课知识要点]
  通过具体问题引入二次函数的概念,在解决问题的过程中体会二次函数的意义.
  [创新思维]
  (1)正方形边长为a(cm),它的面积s(cm2)是多少?
  s = a2
  (2)矩形的长是4厘米,宽是3厘米,如果将其长与宽都增加x厘米,则面积增加y平方厘米,试写出y与x的关系式.
  y = (4+x)(3+x)?4×3 = x2+7x
请观察上面列出的两个式子,它们是不是函数?为什么?如果是函数,请你结合学习一次函数概念的经验,给它下个定义.
  二次函数的概念:形如ax2+bx+c = 0(a≠0,a、b、c为常数)的函数叫二次函数.
  [实践与探索]
  例题:

  补充例题:
  1. m取哪些值时,函数是以x为自变量的二次函数?
  分析  若函数是二次函数,须满足的条件是:.
  解  若函数是二次函数,则
                   .
  解得             ,且.
  因此,当,且时,函数是二次函数.
  回顾与反思  形如的函数只有在的条件下才是二次函数.
  探索  若函数是以x为自变量的一次函数,则m取哪些值?
  2.写出下列各函数关系,并判断它们是什么类型的函数.
  (1)写出正方体的表面积S(cm2)与正方体棱长a(cm)之间的函数关系;
  (2)写出圆的面积y(cm2)与它的周长x(cm)之间的函数关系;
  (3)某种储蓄的年利率是1.98%,存入10000元本金,若不计利息,求本息和y(元)与所存年数x之间的函数关系;
  (4)菱形的两条对角线的和为26cm,求菱形的面积S(cm2)与一对角线长x(cm)之间的函数关系.
  解  (1)由题意,得  ,其中S是a的二次函数;
  (2)由题意,得  ,其中y是x的二次函数;
  (3)由题意,得  (x≥0且是正整数),
  其中y是x的一次函数;
  (4)由题意,得  ,其中S是x的二次函数.
  3.正方形铁片边长为15cm,在四个角上各剪去一个边长为x(cm)的小正方形,用余下的部分做成一个无盖的盒子.
  (1)求盒子的表面积S(cm2)与小正方形边长x(cm)之间的函数关系式;
  (2)当小正方形边长为3cm时,求盒子的表面积.
  解  (1);
      (2)当x = 3cm时,(cm2).
  [当堂课内练习]
  1.下列函数中,哪些是二次函数?
  (1)                     (2)
  (3)            (4)
  2.当k为何值时,函数为二次函数?
  3.已知正方形的面积为,周长为x(cm).
  (1)请写出y与x的函数关系式;
  (2)判断y是否为x的二次函数.
  [本课课外作业]
A组
  1.  已知函数是二次函数,求m的值.
  2.  已知二次函数,当x=3时,y= -5,当x= -5时,求y的值.
  3.  已知一个圆柱的高为27,底面半径为x,求圆柱的体积y与x的函数关系式.若圆柱的底面半径x为3,求此时的y.
  4.  用一根长为40 cm的铁丝围成一个半径为r的扇形,求扇形的面积y与它的半径x之间的函数关系式.这个函数是二次函数吗?请写出半径r的取值范围.
B组
  5.对于任意实数m,下列函数一定是二次函数的是                          (    )
  A.    B.    C.    D.  
  6.下列函数关系中,可以看作二次函数()模型的是   (    )
  A. 在一定的距离内汽车的行驶速度与行驶时间的关系
  B. 我国人口年自然增长率为1%,这样我国人口总数随年份的变化关系
  C. 竖直向上发射的信号弹,从发射到落回地面,信号弹的高度与时间的关系(不计空气阻力)
  圆的周长与圆的半径之间的关系

题目不清楚

 
热门中学数学相关范文