这两周一直在跟随卢老师听课,也在尝试形成自己的思路和教法,通过听课和尝试,我从教材教法、习题方法和评价三个方面来说说我对听课的认识和我在工作中的不足:
一、重视对教材教法的挖掘整合。卢老师上课,并非照本宣科,但对知识的把握却非常到位,都是先从基本的基础的知识说起,由特殊到一般,逐步形成通用模型和固定的套路方法。 如上周,卢老师给我们八年级上课,重点讲了两个章节的内容,一个是第七章平行线的问题。按照教材和教参的要求,本章至少需要七个课时才能完成任务,但卢老师事实上也只用了4个课时便完成任务。其中,第一节是通基本概念和方法,如在通概念时,简单进行了什么是命题,同位角、内错角、同旁内角等,接着是解证明题的思路和方法,从中重点使用了自己研究的“三步论”这种方法来讲解几何中的证明问题。第五章的二元一次方程组解应用题是学生学习的难点,卢老师也只是用了一节课不仅解决了简单的概念认识问题,也熟悉了一种解决代数问题的有效分析方法“三量关系”。这些都可以看出卢老师挖掘教材整合教材研究教材的敬业精神。想想自己的教学,正是缺乏这种教材的深入挖掘整合和对教法的研究意识,作为一名青年教师,虽然也不断的想办法挖掘教材整合教材,但苦于方向的模糊依然感觉自身的很多不足,效果也不明显。
二、重视典型习题的处理和方法引领。在解决习题时,卢老师没有有照搬课本,也没有从课外资料上选择大量的习题,而是有选择的有计划的讲解了课本上的一些习题,如在讲解八年级数学平行线时,卢老师就重点处理了课本上的一些典型例题和课后复习题,卢老师根据多年的研究形成了自己总结的几何学习要领:(1)学会在图形中用符号表示已知、未知;(2)学会在分析中(已知与未知联系过程中)增添辅助角符号、辅助线为转换的需要;(3)整体观察思考、化整为零,各个击破,这些都是解决几何图形问题常用的策略,卢老师还重点提到了自己研究的几何“三步论”------几何的每一个推理都有三部分组成:推理的条件,推出的结论,由条件到结论的依据等,并给出了两种三步论的解题步骤,而所有的几何证明即便是非常复杂的证明也可以由这三步推理出来。卢老师就用三步论来帮助学生分析解决图形问题,简单的几道讲解练习后,学生无论是选择模仿还是利用卢老师的解题套路,大部分学生似乎也都有了些开窍。在解决方程组应用题时,卢老师没有分类型去讲解更没有全部去讲解,只是选择了部分的课后习题,在分析过程中重点涉及到了“三量关系“这个卢老师研究的重要的通用数学分析模型-----将代数问题都可以化成三个量之间的关系,这三个量分析时,以竖式形式写出来,而后无论是横向分析还是纵向分析,它们之间的关系便一目了然。不仅是应用题,在后面的九年级的函数问题时,卢老师也采用了三量关系这种分析方法。这些都体现了卢老师“以点带面、授人以渔”的教育思想。
三、重视课后学习的评价。每经过两节的概念和方法的讲解后,卢老师都要进行一次满分卷的检测和分析,内容也是课堂内容的重复和变形,而把关除对学生掌握的学情进行反馈之外,还要对学生薄弱环节进行补差,体现了卢老师严格的质量把关意识。教学中,作为我们的常态教学,对课堂的把关不严,或者没有抽时间进行及时的反馈和纠错,是我最值得反思和改进的。
通过这段时间的听课和学习,更佩服卢老师的敬业精神,卢老师虽然年龄已经70多岁,但对待学生就像自己的孩子一样和蔼可亲,但在对待知识上依然严格要求,毫不含糊。今后的课堂,我将继续就教材整合挖掘、教法研究、教学评价等方面向卢老师多多学习,好好改进。