教学内容:折纸
教学目标:
1.通过直观的操作活动,理解异分母分数加减法的算理。
2.能正确计算异分母分数的加减法。
教学重难点:独立探索中掌握异分母分数的减法。
教学准备:
教学过程
1.复习导入
师:现在,每个小朋友手上都有一些正方形的纸片,请你们取其中的一张纸折一折,然后在折的一部分涂上颜色,并说一说涂颜色的部分是几分之几?
(学生开始进行折纸、涂色的活动,教师进行巡视。)
师:现在,哪个小朋友来介绍你和折纸与涂色情况。
生:我把一张正方形的纸先对折,再对折,然后在其中一个小正方形上涂颜色,这个涂色的部分叫1/4。
生:我把一张正方形的纸先对折,再对折,然后在其中的3个部分涂上颜色,涂色的部分叫3/4。
一会儿时间,学生介绍了各种各样的折纸与涂色的情况。
师:同学们,如果现在要计算两张纸中的涂色部分合起是多少,你可列出哪些算式?
生:我可以列出:1/4+3/4。
生:我可以列出:3/4+1/2。
生:我可以列出:1/8+5/8。
生:我可以列出:5/8+1/4。
(教师分别将学生提出的算式,书写在黑板上。)
师:请同学们想一想,根据分数的分母特点,这些算式可以分成几类?
生:可以分成两类,一类是分母相同的,一类是分母不同的。
(教师根据学生的分类,将黑板上的算式进行了整理。)
师:这个同学说得正好,我们今天这一节课就要来探索分母不同的分数相加减的计算方法。
2.自主探索
师:现在。请同学们根据自己的爱好,任意选择一道分母不同的加法算式,试一试如何计算?
(学生进行独立的尝试。)
师:谁来汇报自己探索的过程?
生:我选择了“1/4+1/2”的这一道题,它的计算过程是:1/4+1/2=2/6。
生:我也选择了“1/4+1/2”的这一道题,但计算的过程与他不一样。计算过程是:1/4+1/2=1/4+2/4=3/4。
生:我选择了“1/8+1/4”的这一道题,它的计算过程是:1/8+1/4=1/8+2/8=3/8。
生:我认为他的计算太复杂,我的计算过程是:1/8+1/4=2/12。
师:刚才有很多同学汇报了他们的探索过程,那么为什么同样的算式,会出现不同的结果呢?到底谁是正确的?谁是错误的呢?
师:我听了很多同学的不同意见,但现在谁也说服不了谁,那该怎么办呢?能不能观察刚才所折的纸,从折纸的涂色部分中,思考、验证哪一种计算方法正确。
3.图像验证
生:老师,我发现“1/4+1/2”在图上可以看到,它的结果应该是3/4。
生:我也发现了“1/8+1/4”在图上的结果是3/8。
师:那么这个3/4与3/8是怎样得出的呢?
生:我发现了,1/4与1/2在图上是不能直接相加的,因为它们所代表的每一份都不同,只有每份都相同的,才可以相加。
生:我有一个补充,刚才这个同学说的每份不同,也就是它们的分数单位不同,所以只有分数单位相同的,才可以相加。
4.小结:掌握同分母分数加减法的计算法则,灵活计算。
5.练习
67页第1、2、3题