教学内容:
苏教版四年级(下册)第70~72页的例题及相应的“试一试”,第72页“想想做做
第1~3题
教学目标:
1、 使学生结合整数乘、除法运算初步认识倍数和因数的含义,探索求一个数的倍数和因数的方法,能在1~100的自然数中找出10以内某个数的所有倍数,能找出100以内某个数的所有因数。
2、 使学生在认识倍数和因数以及探索一个数的倍数或因数的过程中,进一步体会数学知识之间的内在联系,提高数学思考的水平。
教学过程:
一、谈话导入。
智力题:有三个人,他们中有2个爸爸,2个儿子,这是怎么回事?
教师说明:人和人之间是有联系的,数和数之间也是有联系的。(板书:数和数)
二、初步认识倍数和因数。
1、创设情境。
用12个同样大的正方形拼成一个长方形,可以怎么拼?请同学们先想象一下,然后说出你的摆法,并用乘法算式表示出来。
学生汇报拼法,教师依次展示长方形的拼图,并板书:
4×3=12 6×2=12 12×1=12
教师根据4×3=12 揭示:4×3=12 12是4的倍数,12也是3的倍数,4和3都是12的因数。
揭示课题:倍 因
提出要求:你能用倍数和因数说一说 6×2=12 12×1=12吗?
指名学生回答,其他学生补充。
2、深化感知。
(1) 完成“想想做做”第1题。同桌互说以后再指名学生叙说。
(2) 你能举出一些算式,说说谁是谁的倍数,谁是谁的因数吗?
教师说明:为了方便,我们在研究倍数和因数时,所说的数一般指不是0的自然数。
三、探求一个数的倍数。
1、设疑。
在刚才的学习中,我们知道了3的倍数有12,3的倍数除了12还有别的吗?请在纸上写出3的倍数。你能完成得又对又好吗?。学生在书写过程中引发冲突:为什么停下来不写了?有什么困难吗?引导学生讨论后达成共识:加省略号表示写不完。
2、交流。
投影展示学生作业。
讨论“对不对?”。
讨论“好不好?”。
揭示“有序”,为什么要有序地写倍数呢?
全班讨论:“你是怎么写3的倍数的?”。
3×1 3×2 3×3 ……
3 3+3 6+3 ……
一三得三 二三得六 三三得九
引导学生讨论得出:用依次×1、×2、×3……写出3的倍数。
3、深化。
请写出2的倍数,5的倍数。
学生练习后组织评讲。
4、引导观察,发现规律。
小组讨论:观察这三道例子,你有什么发现?
全班交流,概括规律,
5、小结:发现这些规律可以更好地帮助我们寻找一个数的倍数。
四、探求一个数的因数。
1、设疑。
刚刚我们学会了找一个数的倍数,接下来我们来找一个数的因数。
请写出36的因数,你可以独立思考,可以和同桌讨论,看谁写得又对又多。
学生试写36的因数。
2、组织讨论。
你是怎么找36的因数的?
( )×( )=36 从一道乘法算式中可以找到2个36的因数,6×6=36呢?
36÷( )=( ) 从一道除法算式中也可以找到2个36的因数。
讨论“多”。
问:写得完吗?你可以按照什么顺序写?
师板书36的因数(从两端往中间写),同时指出 :当两个因数越来越接近时,
也就快要写完了。最后写上句号。
3、巩固深化。
请写出15的因数,16的因数。
学生练习后组织评讲。
4、引导观察,发现规律。
问:通过观察这三道例子,你能发现什么规律?
5、小结:写一个数的因数时可以从1和它本身来写,从小到大依次寻找。
五、巩固拓展。
1、完成“想想做做”第2、3题。
学生填表后,组织讨论,你是怎么填写的?指名回答相应的问题。
2、猜数游戏。
同学们下飞行棋时,掷筛子,在1、2、3、4、5、6中进行猜数
(1)它是4的倍数。
(2)它是9的因数,又是3的倍数。
(3)2和3都是它的倍数。
(4)它是9的因数,又是3的倍数。
(5)它是这六个数的因数。
(6)它是因数。
(7)它既是本身的倍数,又是本身的因数。
教后反思:
这是一节概念课,关于“倍数和因数”教材中没有写出具体的数学意义,只是借助乘法算式加以说明,进而让学生探究寻找一个数的倍数和因数。通过备课,我梳理出这样一个教学脉络:乘法算式——倍数和因数——乘法算式——找一个数的倍数和因数。从教材本身来看,这部分知识对于四年级学生而言,没有什么生活经验,也谈不上有什么新兴趣,是一节数学味很浓的概念课。如何借助教材这一载体,让学生在互动、探究中掌握相应的知识,让乏味变成有味呢?我从以下三个方面谈一点教学体会。
一、设疑迁移,点燃学习的火花。
良好的开头是成功的一半。我采用脑筋急转弯中的一道题作为谈话进入正题,不仅可以调动学生的学习兴趣,看似不相关的两件事例中隐藏着共同点:一一对应、相互依存。对感知倍数和因数进行有效的渗透和拓展。
教学找一个数的倍数时,我依据学情,设计让学生独立探究寻找3的倍数。学生发现3的倍数写不完时面面相觑,左顾右盼。学生通过讨论,认为用省略号表示比较恰当。用语文中的一个标点符号解决了数学问题,自己发现问题自己解决,学生从中体验到解决问题的愉快感和掌握新知的成就感。教师一声亲切的问候:“怎么停下来了呢?”、一声惊讶:“哦!写不完呀?”、一句激励:“能想出办法吗?”。看似教师“怠工”的预设,是为了学生“越位”的生成。
二、渗透学法,形成学习的技能。
由于一个数倍数的个数是无限的,那么如何让学生体会“无限”、又如何有序写出来呢?我设计了尝试练习——引出冲突——讨论探究这么一个学习环节。学生带着“又对又好”的要求开始自主练习,学生找倍数的方法有:依次加3、依次乘1、2、3……、用乘法口诀等等。在学生充分讨论的基础上,我组织学生围绕“好”展开评价,有的学生认为:从小到大依次写,因为有序,所以觉得好;有的学生认为:用乘法算式写倍数,既快而且不受前面倍数的影响,可以很快地找到第几个倍数是多少,因为简捷正确率高所以觉得好。如此的交流虽然花费了“宝贵”的学习时间,但是学生从中能体会
到学习的方法,发展了思维,这才是最宝贵的。正所谓没有一路上的山花烂漫,哪有山顶上的风光无限。
三、活用教材,拓展学习的深度。
教材中安排36÷( )=( )这一道除法算式来找一个数的因数。我觉得这样的设计可能会带来几点不足,其一:学生感知倍数和因数的概念、寻找一个数的倍数都是借助乘法算式,同样,找一个数的因数也可以利用乘法,让所学的知识形成系统岂不更有利于学生进行有效学习吗?其二:从学情来分析,相对于除法,学生更熟练、更喜欢运用乘法。以学定教,真正做到以人为本。我在教学时引导学生讨论得出:借助( )×( )=36来寻找一个数的因数。
课尾,我设计了一道掷筛子猜数练习,通过7道题,将整堂课的内容进行整理和概括,对易混淆的概念加以比较,对后续的学习进行适当的铺垫。融知识性、趣味性为一体,收到了课虽止意未尽的良好效果。
纵观整节课,学生在学习过程中自始至终处于主体地位,尝试练习、自主探索、解决问题,教师只是加以引导,以合作者的身份参与其中。整节课似行云流水、波澜不惊,但我想学生在思维上得到了训练,探究问题、寻求解决问题策略的能力也会逐步得到提高的。