撰写公开课教案是每个教师都必需熟悉的一项工作,好的公开课教案能够激发同学兴趣,培养同学多方面的能力,有效提高课堂教学效率。本站提供的这套新课标四年级下册《运算定律与简便运算》公开课教案符合新课标的规范,思路清晰,结构合理,适合同学的年龄特征,与素质教育的要求相吻合,具有科学性、实用性等优点。
教材说明
在理解和掌握了五条运算定律的基础上,本节进一步学习整数四则运算中的一些简便计算。
教材一共布置了五道例题。例1和例2讨论加减法运算中常用的简便计算,例3和例4讨论乘除法运算中常用的简便计算,例5主要讨论乘、加运算中常用的简便运算。也就是说,例1至例4只涉和同级运算,例5则涉和两级运算。
在这五道例题中,例1和例3讨论的连减、连除运算中的简便计算,过去的小学数学中也有同样的内容。教材主要着眼于通过不同解法的比较,使同学认识一个数连续减去或连续除以两个数,可以改为减去两个数的和或除以两个数的积。这里并不要求概括为运算性质。
相对而言,其他三道例题的问题情境较为新颖,解决问题的战略较为灵活,在过去的小学数学教材中比较少见。
这样编排的意图主要是为了通过一些典型的、紧密联系实际生活的例子,引导同学根据运算特点和数据特点,灵活选用合理、简便的计算方法。因此,五道例题所涉和的这些简便计算类型,只是一种载体和手段。换句话说,掌握例题所涉和的这几种简便计算,是一种手段,目的是为了培养和提高同学灵活、合理地选择计算方法的习惯和能力。
本节教材的最大特点是,将简便计算的讨论与实际问题的解决有机地结合起来,使问题解决战略的多样化与计算方法的多样化融为一体。这样既能让实际问题的生活背景成为同学理解简便计算方法和其算理的经验支撑,又能使解决问题能力与计算能力的培养相互促进,同步提高。
配合本节教学布置了两个“做一做”和两个练习。主要是与例题相应的计算练习和应用练习。
教学建议
1.注意正确理解算法多样化、个性化的实质。
首先,要鼓励独立考虑,尽可能地让同学自身探索不同算法。其次,注意组织互相交流,尽可能使个别同学的创见为其他同学共享。第三,应当允许同学自主选择,包括允许同学采用不同的探究方法,选用不同的直观支撑,选择自身喜欢的或适合自身特点的计算方法。第四,尊重同学的个体差别,在教学要求的掌握上,因人而异,区别对待。比方,本节教材的练习中,不少题目的指导语是“怎样简便就怎样算”。由于“怎样简便”没有统一的规范,加上个人具体情况的差别,很自然发生不同的评价判断,你认为简便的方法,他认为不简便。因此,采用何种算法,允许同学自主选择,可以依据有关知识经验对算式进行变形,也可以按运算顺序进行计算。
2.本节内容可以用4课时进行教学。
具体内容的说明和教学建议
1.例1和“做一做”。
编写意图
(1)例1以李叔叔看书为题材,讨论连续减去两个数的几种常用算法。即依次减去两个数,或者减去这两个数的和,或者先减去第二个数再减去第一个数。至于哪种方法更简便,要看具体的数据特点,不能一概而论。
(2)教材以三位同学正在板演的插图,展示了上述三种算法,同时以小精灵提问的方式给出两个问题:他们都是怎样计算的?你喜欢哪种方法?显然,前一个问题是让同学考虑、理解三种算法的计算过程和其中的算理;后一个问题是引导同学比较各种方法的特点,考虑它们的适用范围。
(3)例1下面的“做一做”布置了两道题。第1题是三道式题,第2题是反映人民代表大会表决场景的实际问题,都是典型的连减运算题目。
教学建议
(1)教学时,可以让同学自身读题,同桌互相口述题意,各自独立列出算式。也可以出示一本故事书,通过演示,协助同学理解题意。列出算式后,也可以前后课桌四人小组讨论,有哪几种计算方法。一般来说,通过全班交流,教科书插图中给出的三种算法,同学都能想到。教师可以让同学打开书看看插图中的三位同学是怎样算的,然后对大家能把书上介绍的三种算法都讲全了给予赞扬。进而让大家回答小精灵提出的两个问题,前一个问题只要说明白了就行,不必过于追求说法的统一。比方“依次计算”与“按运算顺序计算”,“把两个减数先加起来再减”与“减去两个的和数”等等,都是可以的。对于后一个问题要引导同学说出理由,也就是启发同学考虑三种方法各自的特点,考虑在什么情况下选用这种算法能使计算简便。如有必要,还可以把这本书的总页数改成266,使同学看到有时依次计算更简便,如遇这种情况,选用先减第二个减数的算法就不合适了。
(2)“做一做”的第1题,可以让同学独立完成,然后订正答案并交流算法。第2题有必要先介绍照片中的内容,简要说明有效票共有三种情况,以和赞成、反对、弃权的主要含义。也可以先让同学说一说他们的理解,教师再适当加以修正或补充。理解了题意,列式计算一般不会再有困难。
2.例2。
编写意图
例2的画面是书店的一角。题中包括两个问题:
(1)价钱分别为56元、31元、19元、24元的四本书中,哪三本的总价在100元左右?
(2)付100元,买48元、47元的书各一套,应找回多少钱?
显然,这是一个需要综合应用加减计算的实际问题,而且解决问题的战略具有较大的灵活性。
问题(1),教材提示了两种算法。一种是把每三本书的价钱相加。采用这种方法,同学遇到的困难是,四本书取三本共有几种情况?这是一个组合问题,回答这个问题,假如直接从四本书中每次取三本,要做到不重不漏,考虑难度较大。假如反过来考虑,四本中取三本,也就是从四本书中每次去掉一本,就很容易得出共有四种情况。这种反过来考虑的间接思路,用于计算三本书总价,就是教材提示的第二种算法。
问题(2),同学容易想到的算法是连减与减去两个价钱的和。因此,教材只提示了第三种另辟蹊径的方法,把100分成两个50。由于两套书的价钱都略小于50,所以这种方法显得比较简便、巧妙。
考虑到这些算法,即解题战略,都具有一定的思维难度,所以教材提示的教学方法是开展小组讨论。
教学建议
教学时,可以创设一个选购图书的问题情境,引出例2的两个问题,也可以让同学看图说出已知的信息与提出的问题,其中第一个问题还有必要让同学说一说“总价在100元左右”是什么意思?明确只要接近100,比100多,比100少都可以。而且,没有要求“最接近”,因此可能有几种情况。然后组织同学小组展开讨论。可以先讨论第一个问题,交流解决后再讨论第二个问题,也可以两个问题一起讨论、交流。教师巡视并酌情参与讨论,给予必要指导。
对于第一个问题,同学很自然地会想到把前三本书相加得出总价106元,有时就不再考虑其他可能了。对此,教师应加以引导:看一看,还有哪些情况;想一想,还可以怎样计算。
组织同学交流时,教师应有意识地加以板书、整理。如:
方法一:每三本价钱相加
①56+31+24=80+31=111(元)
②56+31+19=56+50=106(元)
③56+19+24=80+19=99(元)
④31+19+24=50+24=74(元)
方法二:先算四本总价,再减一本价钱
56+31+19+24=50+80=130(元)
①130-19=111(元)
②130-24=106(元)
③130-31=99(元)
④130-56=74(元)
其中第②、第③种选择都符合要求,总价在100元左右。
对于第二个问题,同学容易想到以下两种算法:
100-48-47
100-(48+47)
假如没有同学想到教材提示的算法,可以让同学看书,再完整地说出计算过程。也可以出示两张50元钞票加以启发:假如付出的100元是两张50元的,买48元、47元的两本书,可以怎样口算比较简便。
3.关于练习七中一些习题的说明和教学建议。
第1题是让同学熟悉连续减去两个数等于减去这两个数的和这一规律。
第2题图中的三座山峰,一座比一座低。可以让同学自身看图列式。交流时可以让同学说一说,两种算法的第一步,得到的是什么。即
2000-416-284 2000-(416+284)
第(2)峰的高度 第(3)峰比第(1)峰低多少米
第3题中5名队员的身高正好从左往右,后一人都比前一人高2厘米,通过“移多补少”可知中间这位队员的身高就是他们的平均身高。因此,列出算式后,可以通过交换、结合求和再除以5,也可以通过观察,直接写出得数。
第4题有必要提醒同学认真审题,搞清已知“样品2255元”是降了再降后的价钱,要我们解决的问题是原价是多少钱。
第5题同样应该强调审题。同学容易只看数据能否“凑整”,而忽略算式的整体。常见错误如:
672-36+64=672-(36+64)
25+75-25+75=100-100
对此,应强调交换律、结合律适用于连加、连乘运算。不能随意用于加减混合、乘除混合运算。
第6题可以先让同学把计算结果填入教科书上的表格中,订正时再让同学说一说自身是怎样计算的,有没有比较简便的算法。
第7题提供的信息比较多,首先要让同学理解,4390是6月11日上午10时之前已出院的总人数。表中的人数是6月11日上午10时以后各时段新出院的人数。结合本题的内容,可以适应渗透和时、准确的统计对于全国上下齐心协力控制疾病的重要性。
第8*题供学有余力的同学选做。参考答案如下:
145+263+55-198 127+133+184+240
=263+(145+55-198) =(127+133+240)+184
=265 =684
487-187-139-61 300-123-75-77
=300-(139+61) =300-(123+77+75)
=100 =25
第42页的考虑题有一定难度。可以把横式改成竖式,以便考虑:
从积的末位是2入手分析。在1~9中除去1,2,5之后,剩下的3,4,6,7,8,9里,积的末位是2的可能情况有3×4,4×8,6×7,8×9。其中8×9明显不符要求(因为把8和9放在因数的末尾,积的首位就没有更大数字可填),舍去。
然后对三种情况分别进行尝试。当第一因数的末位是3,第二因数是4时,1963×4=7852符合要求;(3和4位置交换不符合要求)
当第一因数的末位是6,第二因数是7,或交换位置,结果都不符合要求。
当第一因数的末位是8,第二因数是4,1738×4=6952符合要求。(4和8交换位置不符要求)
所以,结果只有1963×4=7852;1738×4=6952两种。
4.例3和“做一做”。
编写意图
例3是以本单元第2节主题图的内容为载体,讨论可用连除计算解答的实际问题。教材给出了两种解法,即连续除以两个数与除以两个数的积。同时通过两位同学提问的插图,引导同学考虑两种解法分别先算什么,再算什么。然后,通过小精灵的提示引导同学比较两种算法,说出其中的运算规律。
与例1比较,例3只给出了两种解法。这是因为第三种解法先除以后一个数(1250÷5),联系实际作出解释较为困难,对同学来说比较费解,所以有意回避。
例3下面的“做一做”,布置了两道练习题。第1题是计算题,左边两道为连除题,配合例3的教学;右边两道为乘加计算题,可以运用乘法分配律使计算简便。第2题是连除计算的实际问题,情节内容为同学所熟悉的练毛笔字。
教学建议
(1)教学时,可以联系第2节的主题图直接引出例3。也可以先复习减法的简便计算,启发同学想:连续减去两个数,可以减去这两个数的和,那么连续除以两个数,又可以怎么算呢?引起同学的关注和考虑,再引出例3。考虑到连除的算理不如连减那么浅显,因此还可以先设计一些动手操作的活动,如:把24个圆片先平均分成2组,再把每组平均分成3份,求每份是多少。通过操作活动,使同学感悟解决连续等分的问题,可以分了再分,也可以先求出两次一共分成多少份,然后一次分完。有了这一铺垫,学习例3就可以放手让同学自身尝试解答。同学得出两种解法之后,要让他们根据题意说出第一步先算什么。即
1250÷25÷5 1250÷(25×5)
先算每组花了多少元 先算一共有多少棵
假如有同学想到第三种算法,1250÷5÷25,也应该给予肯定,并酌情引导同学理解第一步求的是25组各1棵树苗共多少元。简单地说,即25棵树苗多少元。然后让同学看书,比较两种解法,根据小精灵的提示,把其中的计算规律说完整。
(2)“做一做”中的两道题可以先让同学独立练习,再交流、讲评。第1题的左边两题,可以按顺序算,也可以转化为除以两个数的积,两种方法计算的难易程度相差不大。右边两题运用乘法分配律,计算比较简便,即:
25×(4+8)=25×4+25×8 5×99+5=5×100
12个25等于4个25加8个25 99个5加1个5等于100个5
讲评时,应引导同学依据乘法运算意义,解释计算过程,并对照乘法分配律的字母表达式a(b+c)=ab+ac,看清两题分别是乘法分配律从左到右、从右到左的运用。
第2题虽说是实际问题,但情节内容通俗,数量关系明显,同学一般不会感到困难。
5.例4。
编写意图
例4以王老师买羽毛球拍和羽毛球为题材,提出了三个问题。其中前两个问题,用乘法解答。计算时可以灵活运用乘法结合律,或者把因数25用100÷4代换,使计算简便。第三个问题与例3类似。整个例题具有一定的综合性。
第一个问题,求一共买了多少个羽毛球,教材给出了局部解答,留白局部让同学完成。而后,教材提出了小组交流的话题,以和其他两个问题,让同学自身完成。
教学建议
教学时可以先复习乘法运算定律和连除的简便计算,还可以针对学习中的难点设计一些专项练习,如填空:
12=4×()25=100÷()
32=4×()125=1000÷()
例4的三个问题,可以一次给出,或依次给出,也可以先出示插图和四个已知条件,让同学说说“一打装”是什么意思,然后由同学自身提出问题。同学可能提出以下六个问题:
①每副羽毛球拍多少钱?
②每枝羽毛球拍多少钱?
③一共买了多少个羽毛球?
④买羽毛球一共花了多少钱?
⑤买羽毛球拍和羽毛球一共花了多少钱?
⑥买羽毛球拍比买羽毛球多花了多少钱?
其中问题①包括在问题②里面,因此重点解决问题②、③、④即例4的三个问题,问题⑤、⑥作为练习让同学自身完成。
解决求羽毛球总数的问题,可以先由同学独自列式计算,再组织小组交流。假如没有同学想到用100÷4代换25,可以提醒同学看看教科书上是怎么解决这个问题的。也可以先让同学笔算出12×25的积,再完成书上例题中的填空。通过比较,确信两种简便算法的正确性,然后再组织同学针对“为什么可以这样算”展开讨论。
同学容易理解12×25=3×4×25的算理,但对12×25=12×100÷4,理解起来会有些困难。教师可以酌情给予启发,比方:把25盒看成100盒,扩大到原来的几倍?怎样才干使积不变?以此协助同学理解算法。突破这个难点,再解决“买羽毛球一共花了多少钱?”“每枝羽毛球拍多少钱?”多数同学有能力自身作出解答。因此,这两个问题可当作“做一做”的练习题处置。
6.例5。
编写意图
例5的画面是几位科学家在野外考察的情景。图下有3~7月份的月历,并标出了科考队的动身日期、计划返回日期和实际返回日期,然后提出问题“科考队这次考察一共花了多少时间?”
教材介绍了按月、按周计算的两种思路,以和相应的列式计算过程。在按月计算的过程中,运用了乘法分配律。然后通过小精灵,鼓励同学提出自身的算法,和同学交流。最后让同学根据例题的内容,继续提出其他问题作为练习题。
教学建议
教学时,可以通过投影或课件展示例5的画面、说明文字和问题。让同学说一说我们可以得到哪些信息,要我们计算什么。这里应当让同学明确:科考队3月1日动身,7月26日返回;要求的问题是科学考察实际用的天数,而不是计划用的天数。然后让同学独立考虑,尝试列式计算,也可以组织小组讨论。
同学容易想到按月计算的思路,根据已知的动身、返回时间,可以知道整个3、4、5、6月都在外面,7月有26天在外。要注意的是3至6月中有两个大月(有31天的月)、有两个小月(有30天的月)。同学列出的算式可能不完全相同,如:
31+30+31+30+2630×4+2+26
只要是对的,就应当给予肯定。
按周计算的思路不难理解,但计数一共有多少周比较容易出错。可以让同桌互相指着月历边点、边数,也可以请能正确计数的同学介绍自身是怎样数的。
7.关于练习八中一些习题的说明和教学建议。
第1~3题是解决实际问题。
第1题列式为350÷14,可以用笔算,也可以简便计算。
350÷14=350÷7÷2
第2题可以列式为2?40×7+0?60×7,计算时利用乘法分配律。也可以直接列式为(2?40+0?60)×7。
第3题比较灵活。可以用乘法算出5本相册一共可以插多少张照片,然后和900张比较大小;也可以用除法,如900÷5÷6,将商和32页比大小。
第4题是让同学看算式,说依据,指出每个算式运用了什么定律。其中第2个算式同学回答用到了乘法交换律即可,可以不去深究。第4、5两个算式既用了乘法交换律,又用了乘法结合律。
第5题是判断题,反映的都是同学平常比较容易犯的错误。其中前两题是对的,后面三题都是错的。练习后,可以让同学说一说,后面三题分别错在哪里。
第6题是8道计算题,其中每一题都可以简便计算,基本覆盖了本单元的简便计算方法。因此,可以在同学完成练习后,通过讲评加以对比、辨析。如:
98+265+202=98+202+265(连加,加数可交换、结合)
250×13×4=250×4×13(连乘,因数可交换、结合)
273-73-27=273-(73+27)(连减,可减去减数的和)
3200÷4÷25=3200÷(4×25)(连除,可除以除数的积)
88×125=(11×8)×125(88看成两数的积,转化为连乘,可运用乘法结合律)
88×125=(80+8)×125(88看成两数的和,转化为和乘以一个数,可运用乘法分配律)
第7题是一道有关几何计算的实际问题。题中的多边形可以划分为宽相等的两个长方形,因此又可以把这两个长方形拼成一个长方形。如图:
21×9+19×9=(21+19)×9
可见,本题实际上是乘法分配律的一种几何模型。
第8题与例4的第一个问题类似。
第47页的考虑题,可以这样想:
从前两个算式得出
△+△=○+○+○+○
即△=○+○
把第3个算式中的2个○换成1个△,得
△+□+△=400
由第1个算式,2个△可换成3个□,即
□+□+□+□=400
所以□=100,代入第1、2个算式,可得
△=150
○=75