苏教版五年级下册数学《因数与倍数整理与练习》教案
第十一课时 因数与倍数整理与练习(1)
教学内容:
苏教版义务教育教科书《数学>五年级下册第47~48页整理与练习“回顾与整理”和“练习与应用”第1~7题。
教学目标:
1.使学生加深认识因数和倍数,能找一个数的因数或倍数,进一步认识质数和合数;掌握2、5、3的倍数的特征,进一步认识偶数和奇数;加深理解质因数,能正确分解质因数。
2.使学生能整理因数和倍数的知识内容,感受知识之间的内在联系;能应用相关概念进行分析、判断、推理,进一步掌握思考、解决数学问题的方法,积累数学思维的初步经验,提高分析、推理、判断等思维能力;加深对数的认识,进一步发展数感。
3.使学生主动参与回顾、整理知识和分析、解决问题等活动,培养乐于思考的品质和与同伴互相交流、倾听等合作意识和能力;感受数学方面的知识积累和进步,提高学好数学的自信心。
教学重点:
整理、应用因数和倍数的知识。
教学难点:
应用概念正确判断、推理。
教学过程:
一、揭示课题
谈话:最近的数学课,我们学习了哪方面的内容?回忆一下,都学到了哪些知识?
揭题:我们已经学完了因数和倍数这一单元的内容,今天开始主要整理与练习这一单元内容。(板书课题)通过整理与练习,我们要进一多认识因数与倍数,2.5.3的倍数的特征,能熟练掌握找一个数的因数或倍数的方法;能判断偶数和奇数、质数和合数,了解这些概念之间的联系与区别,能正确分解质因数,提高对数的特征的认识,加深对数的认识。
二、回顾与整理
1.回顾讨论。
出示讨论题:
(1)你是怎样理解因数和倍数的?举例说明你的认识。
(2)2、5、3的倍数有什么特征?我们是怎样发现的?
(3)自然数可以怎样分类,各能分成哪几类?举例说说什么是质因数和分解质因数。
(4)什么是两个数的公因数和最大公因数,公倍数和最小公倍数?
让学生在小组里讨论,结合讨论适当记录自己的认识或例子。
2.交流整理。
围绕讨论题,引导学生展开交流,结合交流板书主要内容。
(1)提问:能说说什么是因数和倍数吗?可以用例子说明。(结合交流板书一两个乘法或除法算式)
引导:在整数乘法算式里,两个乘数都是积的因数,积是两个乘数的倍数。你能根据这里的算式说说哪个是哪个的因数,哪个是哪个的倍数吗?
(指名学生说一说,再集体说一说)
你能找出6的因数吗?(板书因数)6的倍数呢?(板书倍数)
能说说找一个数的因数或倍数的方法吗?
说明:一个数的因数可以从小到大一对一对地找,到中间两个因数之间没有因数为止;一个数的倍数可以用依次乘1、2、3……这样的方法找,注意一个数的倍数是无限的,写一个数的倍数要注意用省略号。
(2)提问:2、5、3的倍数各有什么特征?我们是怎样发现的?
自然数可以怎样分类,各可以分成哪几类?
你能举出偶数和奇数、质数和合数的一些例子吗?(学生举出各类数的例子)
说明:按是不是2的倍数可以把自然数分成偶数和奇数两类,是2的倍数的是偶数,不是2的倍数的是奇数;按因数的个数可以把自然数分成1和质数、合数三类,只有两个因数的是质数,有两个以上因数的是合数,1既不是质数也不是合数。
什么是质因数和分解质因数?6有哪些质因数?怎样把6分解质因数?(板书式子,并说明其中的质因数)
(3)提问:什么是公因数和最大公因数,什么是公倍数和最小公倍数?
说明:两个数公有的因数叫公因数,其中最大的叫最大公因数;两个数公有的倍数叫公倍数,其中最小的叫最小公倍数。
结合交流内容,逐步板书成:
l
质数 质因数
合数 分解质因数
因数 公因数 最大公因数
(互相依存)
倍数 公倍数 最小公倍数
2、5、3的倍数的特征
偶数
奇数
(4)引导:请同学们现在观察我们整理的这一单元学过的内容,了解知 识之间的联系,同桌互相说说知识是怎样发展的。
学生互相交流,教师巡视、倾听。
交流:哪位同学能看黑板上整理的内容,说说我们怎样逐步认识这些知识的,知识是怎样发展起来的。
三、练习与应用
1.做“练习与应用”第1题。
指名学生交流,说说每组里因数和倍数关系。
提问:3和7有没有因数和倍数关系?为什么没有?
2.做“练习与应用”第2题。
(1)让学生独立写出前四个数的所有因数,指名两人板演。
交流:你是怎样找它们的因数的?(检查板演题)
(2)口答后三个数的因数。
引导:能说出后面每个数的全部因数吗?(学生口答,教师板书)
提问:一个数的因数有什么特点?
说明:一个数因数的个数是有限的,最小的是1.最大的是它本身。
3.分别说出下面各数的倍数。
5 8 1 2 1 7
分别指名学生说出各数的倍数,教师板书。
提问:为什么要写省略号?一个数的倍数有什么特点?
说明:一个数倍数的个数是无限的,最小的是它本身,没有最大的倍数。
4.做“练习与应用”第3题。
(1)让学生独立完成填数。
交流:题里各是怎样填的?(呈现结果)填数时怎样想的?
提问:哪些数既是3的倍数,又是5的倍数?你是怎样想的?
同时是2和5的倍数的数有什么特征?
哪些数既是2的倍数,又是5和3的倍数?说说你的判断方法。
(2)这里哪些数是偶数?奇数呢?
你是怎样判断偶数和奇数的?
5.做“练习与应用”第4题。
要求学生独立思考,自己选出两张卡片,按各题的要求分别组成两位数,把能组成的数记录下来。
交流:同时是5和3的倍数的数有哪些?(板书:30)如果是三位数呢?
(板书:180 810)
组成的两位数中最大的偶数是多少?(板书:80)最小的奇数呢?(板书:13)
6.做“练习与应用”第5题。
让学生把质数圈出来,在合数下面画线。
交流:哪些是质数,哪些是合数?(板书成两类)质数和合数是按什么分的?
说明:质数只有2个因数,合数至少有3个因数。
7.做“练习与应用’’第6题。
让学生选出质数和偶数。
交流、呈现结果。
提问:观察表里选出的质数和偶数,所有的质数都是奇数吗?请举出一个具体例子。
所有的合数都是偶数吗?你能举例子说明吗?
指出:如果要说明一个结论是错误的,只要举一个反例。比如,要判断质数都是奇数的说法是错的,只要举出质数2是偶数这个例子。这里质数2是偶数就是一个反例。要判断合数都是偶数是错的,也只要举一个反例,比如合数9就是奇数。
8.下面的说法正确吗?
(1)大于0的自然数不是奇数就是偶数。
(2)大于0的自然数不是质数就是合数。
(3)奇数都是质数,偶数都是合数。
(4)自然数中最小的偶数是2,最小的合数是4 。
(5)一个数本身既是它的因数,又是它的倍数。
9.做“练习与应用”第7题。
(1)让学生填空,指名板演。交流并确认结果。
提问:这里填写的质数都叫积的什么数?为什么称它是积的质因数?
说明:这里把合数写成这种质数相乘的形式,叫什么?
(2)把30、42分别分解质因数。
学生完成,交流板书,检查订正。
四、全课总结
提问:这节课主要复习的哪些内容?你有哪些收获?
教学反思:
第十二课时 因数与倍数整理与练习(2)
教学内容:
苏教版义务教育教科书《数学》五年级下册第48~49页整理与练习“练习与应用’’第8~12题,“探索与实践’’第13~14题,“评价与反思”。
教学目标:
1.使学生进一步认识公因数和最大公因数、公倍数和最小公倍数,能正确地求两个数的最大公因数、最小公倍数;能应用因数、倍数的知识解决简单实际问题,或探索数的一些简单规律或特点。
2.使学生整理并进一步理解求两个数的最大公因数、最小公倍数的方法,能在思考、解决问题中有条理地思考,培养观察、比较、归纳等思维能力,提高分析问题、解决问题的能力。
3.使学生在解决问题和探索实践过程中,感受获得方法、发现规律的喜悦,体会数学的奇妙,培养学习数学的自信心,产生对数学的好奇心;培养回顾反思、客观评价的意识、习惯和品质。
教学重点:
求最大公因数和最小公倍数。
教学难点:
探索、理解简单规律。
教学过程:
一、回顾与引入
1.复习旧知。
让学生计算“练习与应用’’第8题,直接写出得数。
口答得数,说说同分母分数加、减法是怎样算的。
2.回顾内容。
引导:我们上节课整理与练习了因数和倍数,重点练习与应用了哪些内容?
你能找出12和8这两个数的因数和倍数吗?(板书:1 2 8)自己找一找,把因数和倍数写下来。
交流:12的因数和倍数各有哪些?8呢?(因数和倍数分别对应板书)
提问:比较两个数的因数,你能找出怎样的数?比较倍数呢?
3.引入复习。
提问:那什么叫公因数和最大公因数?公倍数和最小公倍数呢?
引入:今天的数学课,我们继续整理与练习因数和倍数,在上节课复习的基础上,重点整理与练习公因数和公倍数的知识。通过这节课的复习,要进一步认识公因数和公倍数,特别要能正确地求两个数的最大公因数和最小公倍数;同时还要通过探索与实践,发现一些关于数的特征的简单规律。
二、练习与应用
1.整理方法。
引导:我们已经从上面的练习中了解了公因数和公倍数的意义,能不能自己举出两个数的例子,找出公因数和公倍数?每个同学独立完成。
指名交流自己的例子,教师选择两个例子板书过程。
让同桌同学互相交流自己的例子,说出公因数和公倍数。
提问:黑板上的例子里,最大公因数是几,最小公倍数是几?怎样找出来的?
那现在说一说,求公因数和公倍数的方法各是怎样的?求最大公因数和最小公倍数的一般方法是怎样的?
指出:求两个数的公因数或公倍数,可以列举其中一个数的因数或倍数,再从这些因数或倍数里找出另一个数的因数或倍数,就是它们的公因数或公倍数。公因数中最大的一个就是最大公因数,公倍数中最小的一个就是最小公倍数。这就是找最大公因数和最小公倍数的一般方法。
2.做“练习与应用”第9题。
(1)要求学生完成前四组题,先求最大公因数,再求最小公倍数。
交流:这四组数各是怎样找最大公因数的,结果各是几?分别说说你的方法。(根据交流板书过程和结果)
哪几组可以用特殊方法找最大公因数?为什么?
哪几组是按一般方法找的?
指出:如果两个数有倍数关系,小数就是两个数的最大公因数;如果只有公因数1,最大公因数就是1;如果两个数是一般关系,就先找一个数的因数,再结合另一个数找出最大公因数。
(2)交流:这四组数各是怎样找最小公倍数的,结果各是几?说一说你的方法。(根据交流板书过程和结果)
哪几组可以用特殊方法找最小公倍数?为什么?
哪几组是按一般方法找的?
指出:如果两个数有倍数关系,大数就是两个数的最小公倍数;如果只有公因数1,最小公倍数就是两个数的积;如果两个数是一般关系,可以用大数翻倍法找最小公倍数,这样比较简便。
3.做“练习与应用”第10题。
学生读题,弄清题意:每次分别按3格和4格走,找出两种棋都走到的格子涂上颜色。
让学生用自己的方法找出这些格子,涂上颜色。
交流:你涂色的是哪几格?这些涂色的数与3和4有什么关系?
找这些格子你用的是什么方法?
引导:同学们用了不同的方法,有的先找两种棋子各走到过哪些格子,再找到都走到的格子;有的是用求公倍数的方法。那为什么可以用求公倍数的方法呢?说说你是怎样想的。
指出:红棋走到的格子,一定是3的倍数;黄棋走到的格子,一定是4的倍数;两种棋都走到的格子就是3和4的公倍数。所以只要找出3和4的公倍数,涂上颜色。具体找公倍数可以先找到最小公倍数12,再依次乘2、乘3……就可以按顺序得出3和4的公倍数。解决像这样的问题,就要用求最小公倍数的方法。所以应用求最大公因数和最小公倍数的方法,可以解决一些特殊的实际问题。
追问:接着走下去,还会都走到哪些格子?
4.讨论“练习与应用”第11、12题。
要求学生独立读题,思考各用什么方法解决,和同桌说一说。
交流:你想到这两题特别要用什么方法解决?为什么?
三、探索与实践
1.做“探索与实践”第13题。
(1)让学生先找出9的倍数,确认有72、81、99、297 。
要求算出这些9的倍数各数位上数的和,再比一比,看看能发现什么特点。
学生计算,教师巡视。
提问:你发现这些9的倍数都有什么特点?
引导:9的倍数,各数位上数的和是9的倍数。那你还能再找~些9的倍数验证你的发现吗?试试看。
交流:你找出哪些数验证的?(板书这些数,并口头验证)
小结:现在你能说说自己的发现吗?
指出:9的倍数,它各数位上数的和一定是9的倍数。
(2)下面哪些数是9的倍数?
354 243 702 381 486
(3)在I]里填上合适的数字,使它成为9的倍数。
28口 37口 1口6 5口4
2.做“探索与实践”第14题。
(1)让学生在表格里填写1~15各数和3的最大公因数。
交流:这些最大公因数有怎样的规律?每个周期的数是按怎样的顺序排列的?
(2)让学生在方格里描点、连线。
交流:你连成的怎样的折线?(呈现图形)连成的折线有什么特点?折线的周期是怎样的?
(3)追问:如果找这些数和4的最大公因数,会有什么特点?把你的想法和大家说一说。
引导学生发现,1~15各数和4的最大公因数,以1,1,1,4为周期重复。
四、评价总结
1.评价反思。
让学生对照评价内容,反思自己三个方面的学习表现,在☆上涂色表示。
交流评价结果,肯定全班的学习表现,提出以后的学习希望和要求。
2.交流收获。
提问:通过这节课的整理与练习,你对这部分内容有哪些收获?还有哪些体会?
3.布置作业。
完成“练习与应用’’第9题后四组题,第11、12题。
教学反思: