《两位数减一位数(退位)》是在学生已系统掌握了整十数加、减整十数,两位数加一位数、整十数,两位数减一位数(不涉及退位)和两位数减整十数的基础上进行教学的,是本单元的一个教学难点。本节课通过情境图让学生自己观察数学信息,提出数学问题,列出算式36-8。根据学生之前所了解到的个位减个位,十位减十位,他们明白要用36个位上的6去减8,然而6-8并不够减,从而引发认知冲突,让学生根据小棒去思考“6-8不够减怎么办”,将数形结合,思考解决问题的办法,学生能够根据小棒想到许多解决办法,之后在这些办法中进行优化、总结,得出最适用于两位数减一位数(退位)的方法,并进行适当的练习。
本节课的整个教学过程中,最重要的就是数形结合,因为退位减法对一年级学生来说有些抽象,理解上有些吃力,如果能用图形直观地描述数的运算的意义,将对学生的理解产生积极的作用。数形结合是一种重要的数学思考,也是一种很好的教学策略。著名数学家华罗庚先生曾经说过:“数缺形时少直观,形少数时难入微。”在教学中,许多算理的理解如能做到数形结合,学生便可透彻地加以理解,从而有效地突破教学重难点。当把36根小棒以3捆和6根的形式出现在孩子们面前时,他们能够直观地去思考如何用36减8,以“形”思“数”,从而他们想出了许多好办法,有同学说:“6-8不够减,可以再拆开一捆小棒,这样就变成了16根单独的小棒,16-8=8,剩下的8根和剩下的2捆合起来就是28,所以36-8=28”,有同学说:“6-8不够减可以从36根小棒中先减去6根,36-6=30,然后再从3捆中拿走2根,30-2=28。”还有同学说:“可以从一捆小棒里减去8根,10-8=2,这两根再和剩下的26根合起来,26+2=28。”……通过把抽象的算式和直观的小棒结合起来,学生们能够通过摆小棒,动手操作,找到解决问题的办法,初步感知个位不够减就要从十位分出来一些给个位,也就是初步认识什么是“退位”。在讲述上面的几种方法时,我让学生认真倾听,理解别人的想法。当一个学生汇报后,就请另一个学生或者更多的学生说一说别人的意思。这样做就是让学生之间产生互动,达到进一步理解知识的目的。最后对方法进行对比,让学生自己选择自己最喜欢的方法说一说,这样就发现了大多数同学都会选择把36分成20和16,先算16-8=8,再算20+8=28这样的方法,再对这种方法进行强化与巩固。
数形结合,将抽象与直观相结合,是突破这节课难点的一个关键,但是在这节课的课后我也发现了一些存在的问题,比如,知识的负迁移影响了学生们的计算认知。在学习退位减法的时候,经过最后的大量练习,孩子们总是惯性的把两位数的十位分出来一个十给个位,但是在不涉及退位的减法中可以直接把两位数分成几十和几,学习了退位减法之后,他们在做不退位减法时也会惯性地把十位分出来一个十给个位,虽然最后的计算结果是对的,但是这样的过程确实徒增麻烦,这种情况也确实让我意识到了在新授的时候,我缺少了把两种两位数减一位数的题目进行对比,让学生再感受感受到底什么时候需要从十位分出来一个十,到底什么时候可以直接进行计算,这一点是我在课前没有预设到的,也是我需要再次强调与巩固的地方。
理解抽象的知识需要直观的体验,同时在学习新知识的时候也一定要注重与旧知识的关联,要把握合适的方法,让一节课变得更加高效,让学生获得良好的知识体验。