说课就是教师口头表述具体课题的教学设想及其理论依据,也就是授课教师在备课的基础上,面对同行或教研人员,讲述自己的 教学设计,然后由听者评说,达到互相交流,共同提高的目的的一种教学研究和师资培训的活动。所以说课稿本身没有太多要求,更多的是对说课者在口述过程中的思路和条理要求比较更多一些。
尊敬的各位评委、各位老师:
一、说教材
《鸡兔同笼》是人教版小学数学四年级下册第九单元中第103-105页中的内容,这是数学广角中的内容,是在学习了“租船问题”的基础上进行的,学生在第一单元的租船问题这一课已经接触过列表法及调整法,这为今天学生解决鸡兔同笼问题垫定了基础,学习了今天的内容,又为学生以后使用假设法解答其它实际问题打下了良好的基础。
二、说学情
四年级学生已经进入第二学段的学习,他们的求知欲和好奇心较强,同时动手操作能力、自主探究能力都有所提高,但运用能力不够,抽象概括能力不强,思维方式还在从形象思维过渡到抽象思维的过程中。
三、说教学目标
基于以上分析及新课标理念,本节课我确定如下的三维教学目标:
(1)知识与技能:理解“鸡兔同笼”问题,感受古代数学问题的趣味性;
(2)过程与方法:在自主探究、合作交流的过程中,尝试用不同方法解决“鸡兔同笼”问题,体会解决问题策略的多样性。
(3)情感态度与价值观:增强民族自豪感,提高学生对数学的兴趣和求知欲,培养学生逻辑推理能力。
四、说重难点:
通过对教材的反复推敲,我把教学重点难点定为:用假设法解决“鸡兔同笼”问题。
五、说教具:多媒体课件。
六、说教法、学法
为了更好地突出重点、突破难点,在本课我打算以启发式为指导思想,采用情境导入、巧设疑问、引导探究等教法。
学法
新课标指出:有效的数学学习活动,不能单纯依赖模仿与记忆,自主探索,合作交流是学生学习数学的重要方式,故本课以观察比较、自主探究、交流讨论为主要学习方法。让学生多思、多说、多练,使学生由被动的学习转为积极主动参与学习。根据学法指导的差异性原则,我将对学生进行有针对性的分类指导。
七、说教学过程
为了有效达成本课的教学目标,我设计了如下四个教学环节:导入新课,探究新知,巩固运用,反馈总结。
(一)导入新课
我采用谈话导入:“同学们,你们喜欢画画吗?老师画一种动物让你们猜猜,—这只动物呀,喜欢吃虫子,”学生很容易猜到是鸡,我再添上两笔,变成 这种动物呢,有长长的耳朵红红的眼睛,学生很容易猜到是兔子。这时我用课件出示103页的主题图和原题,并适时揭示课题,这就是著名的“鸡兔同笼”问题{板书:鸡兔同笼}。同学们知道这道题是什么意思吗?学生讨论后指名请学生来讲解题目意思,我接着追问:“这个问题你现在有办法解决吗?”学生可能觉得无从下手,我引导学生:“这道题的数据比较大,我们可以把数据改小一点,从简单的题目入手。”
【这样的导入,符合学生的心理特点,激发了学生的好奇心和探究欲望,让学生在猜迷中不知不觉地进入学习状态。顺利过渡到第二个探究新知的教学环节。】
(二)探究新知
这一环节我设计了如下2个步骤:一理解题意二探究方法
1. 理解题意
课件出示104页的例1,请学生读题并说一说从题中了解到了哪些信息,如果学生只说出从题目中可以知道鸡和兔加起来总共有8只,脚共有26只,引导学生说出题目中隐含的信息,即鸡有两只脚,兔子有四只脚。
2.探究方法
根据从题目中收集的信息,请学生们分小组交流讨论,用哪些方法可以找到答案。教师在教室里巡视指导,找出学生想到的不同方法并收集起来。学生可能想到很多种不同的方法,我用实物投影仪从易到难呈现给学生观察并交流讨论。学生可能想到以下方法:
(1) 列表法
有的学生可能是从鸡有8只开始写起一直到找到答案为止,有些学生可能先直接猜测鸡、兔各有四只,发现比题目中还少两只脚,于是调整为3只鸡5只兔子,则刚好是26只脚,找到答案。无论学生使用哪一种,我都给予表扬。
(2) 画图法
学生可能利用我导入时的图直接先画8只鸡,{板书:}发现总共只有16只脚,于是从第一只鸡开始给他们添上两只脚一直添到第5只,得到26只脚。找到答案3只鸡5只兔子。
(3) 假设法
学生也可能想到,我把他们全部假设成鸡,也就是脚的总数为:8*2=16(只)比实际少:26-16=10(只)那兔的只数:10/(4-2)=5(只)鸡的只数:8-5=3(只),这时侯我要追问学生:“谁知道这个4-2是什么意思,”引导学生说出因为把一只兔子当成了鸡,少算的脚就是1只兔子比1只鸡多出来的脚,也就是4-2只。然后请学生口头检验:3*2+5*4=26只
如果学生想到的是这一种,我便请学生假设全部是兔子,那能假设法计算找到答案吗?请学生独立完成,全班交流,集体订正。
【本环节让学生充分经历了观察、比较、想像、推理、归纳、概括等数学活动与数学思考,探究用多种方法解决鸡兔同笼问题,充分的探究活动,既培养了学生的合理的推理能力,又有效促进了学生思维能力的发展。】
(三)巩固运用
指导学生完成教材孙子算经中的“鸡兔同笼”问题及第105页的“做一做”第1题和第2题。
【练习是掌握知识,形成技能,发展思维的重要手段。围绕本课的教学重难点,有层次有针对性地练习。能加深学生对本课所学知识的理解,培养思维的灵活性。】
(四)反馈总结
组织学生畅谈通过本课的学习,有什么收获?
【让学生自己总结所学知识,不仅能进一步内化本课所学,而且学生经历了自我总结、评价的过程,更能在知、情、意、行方面同时得到发展。】
(五)说板书设计
我摈弃了传统大量文字的板书设计,采用这种简明扼要、重点突出的板书,使学生一目了然。
纵观整个教学过程,本课的特点是:在情境中导入,在探究中求知,在碰撞中生成,在合作中交流,在练习中提升。教师始终定位为学生学习活动的组织者、引导者、合作者。我坚信,这样的学习一定是一个生动活泼的、主动的、富有个性的过程。
小学数学《鸡兔同笼》教案设计模板
【教学目标】
1、知识与技能
初步认识鸡兔同笼的数学趣题,了解有关的数学史。能用列表法和画图法解决相关的实际问题,结合图解法理解假设的方法解决鸡兔同笼问题。
2、过程与方法
通过画图分析、列表举例、假设计算等方法理解数量关系,体会数形结合的方便性,体验解决问题方法的多样化,提高解决实际问题的能力。
3、情感、态度与价值观
培养学生的合作意识,在现实情景中,在交流的过程中,使学生感受到数学思想方法的运用与解决实际问题的联系,提高学生解决问题的能力和自信心,受到多种数学思想方法的熏陶,进而让学生体会数学的价值。
【教学重点】用画图法和列表法解决相关的实际问题。
【教学难点】体会解决问题策略的多样化,培养学生分析问题、解决问题的能力。
【教学流程】
(一)问题引入,揭示课题。
师:(出示主题图)大约在1500年前,《孙子算经》中记载了这样一个有趣的问题。书中说:“今有雉(野鸡)兔同笼,上有三十五头,下有九十四足,问雉兔各几何?”
问:这段话是什么意思?谁能说说?(生试说)
师:这段话意思是:有若干只鸡兔同在一个笼子里,从上面数,有35个头;从下面数,有94只脚。问笼中鸡和兔各有几只?这就是我们通常所说的鸡兔同笼问题,如何解决这个1500年前古人提出的数学问题,就是我们这节课要研究的内容。(板书课题:鸡兔同笼问题)
(二)主动探究、合作交流、学习新知。
师:说明为了研究方便,我们先将题目的条件做一个简化。
(课件出示)例1:鸡兔同笼,有8个头,26条腿,鸡、兔各有几只?
师:同学们先讨论一下,看能不能给大家提供一种或几种解这道题的思路,让其它的同学能很容易就理解、弄懂这道题。(学生讨论)
学生初步交流,教师提炼:可以用画图法、列表法、假设的方法。
师:请同学们先认真思考,以小组为单位展开讨论、交流,看看你们小组该选择什么方法来解决这个问题?再把你们的想法,你的思考过程用你自己的方式记录下来。
学生思考、分析、探索,接下来小组讨论、交流。
小组活动充分后进入小组汇报、集体交流阶段。
师:谁能说一说你们小组探究的过程,你们是怎样得出结论的?鸡兔各有几只?
学生汇报探究的方法和结论:
1、 画图法:
给每只动物先画上2条腿(也就是都看成鸡),这样一共用16条腿,还剩下10条腿。一次增加2条腿,一只鸡就变成了一只兔,要把10条画完,要把5只鸡变成兔。
总结:画图的方法非常便于观察、非常容易理解。
2、列表法:(展示学生所列表格)
学生说明列表的方法及步骤:
学生汇报:我们先假设有8只鸡这样一共就有16条腿,显然不对,再减去一只鸡,加上一个兔,这样一个一个地试,把结果列成表格,最后得出3只鸡、5只兔。
师:同学们的探索精神和方法都很好,都能用自己的方法成功地解决“鸡兔同笼问题”。不过上面的两种方法,老师还是觉得比较麻烦,又是画图,又是列表的,有没有更方便简洁的方法来解决这个问题?
3、假设法:(随学生能否出现此种情况作为机动出示)
教师引导:观察上面的表格我们发现。如果8只都是鸡,则一共只有16条腿这样就比26条腿少10条腿,这是因为实际每只兔子比每只鸡多2条腿。一共多了10条腿,于是兔就有10÷2=5(只),所以我们还可以这样去想:
板书:方法一:假设8只都是鸡,那么兔有:
(26-8×2)÷(4-2)=5(只)
鸡有8-5=3(只)
同样如果8只都是兔,则一共只有32条腿这样就比26条腿多6条腿,这是因为实际每只鸡比每只兔子少2条腿。一共多了6条腿,于是鸡就有6÷2=3(只),所以我们还可以这样去想:
板书:方法二:假设8只都是兔,那么鸡有:
(4×8-26)÷(4-2)=3(只)
兔有8-3=5(只)
小结方法:刚才我们用这么多的方法解决了鸡兔同笼问题,你最喜欢哪一种方法,说说你的理由。
现在我们重新总结一下这些方法:数目比较小时,用画图和列表的方法比较快,数目比较大时,用假设法比较好。
(三)解决实际问题、课堂延伸。
1.尝试解答课前提出的古代《孙子算经》中记载的鸡兔同笼问题。书中说:“今有鸡兔同笼,上有三十五头,下有九十四足,问鸡兔各几何?
看看我国古人是怎么解这个题的。
2、自行车和三轮车共10辆,总共有26个轮子。自行车和三轮车各有多少辆?
(四)课堂小结:
通过今天的学习,你有哪些收获?
师总结:这节课,我们一起用画图法、列表法和假设法解决了我国古代著名的“鸡兔同笼”问题。其实在1500年以来,我们中国历代的数学家都在不断的研究和探索这个问题,也得出了许多的解决“鸡兔同笼”问题的方法,而且从中得到了很多的数学思想。希望同学们在今后的学习中,善于思考,善于发现,善于总结方法。