新课标四年级下册数学全册教案(人教版)、教学计划、总结


第一单元 四则运算
第一课时:
教学内容:P4例1、例2(只含有同一级运算的混合运算)
教学目标:
1.      使学生进一步掌握含有同一级运算的运算顺序。
2.      让学生经历探索和交流解决实际问题的过程,感受解决问题的一些策略和方法。
3.      使学生在解决实际问题的过程中,养成认真审题、独立思考等学习习惯。
教学过程:
一、主题图 引入
观察主题图,根据条件提出问题。
(1)说一说图中的人们在干什么?“冰雪天地”分成几个活动区?每个区有多少人?你是怎么知道的?
组织学生提问并对简单地问题直接解答。
(2)根据图中提出的信息,你能提出哪些问题,怎样解决?
通过补充条件,继续提问。
1.      滑冰场上午有72人,中午有44人离去,又有85人到来。现在有多少人在滑冰?
2.      “冰雪天地”3天接待987人。照这样计算,6天预计接待多少人?
等等。
先小组交流,再全班交流。
提示学生可以自己进行条件的补充。
二、新授
1.      小组4人对黑板上的题目进行分配解答。
引导学生对黑板上的问题进行解答,请学生在练习本上列出综合算式并进行脱式计算。
2.      小组内互相说说你是怎样解答的?
教师巡视并对学生的叙述进行指导。
3.      全班汇报:组织全班同学进行汇报,并且互相补充,注意每步表示的意义的叙述。
(1)71-44+85
    =27+85
    =113(人)
71-44表示中午44人离去后还剩多少人,在加上到来的85人,就是现在滑冰场有多少人。
(2)987÷3×6    6÷3×987
    =329×6      =2×987
    =1974(人)  =1974(人)
第一种方法中,987÷3算出了1天“冰雪天地”接待的人数,在乘6算出6天接待的总人数。(实际上就是原来学习的乘除混合应用题,不知道单一量的情况下求总量,一般都是乘除混合应用题。)
第二种方法,因为是照这样计算,那么每天接待的人数可以看作是一样多的,就可以先算出6天是3天的几倍,6天接待的总人数也是3天接待的总人数的几倍。就可以直接用3天的987人数去乘算出来的2倍。等等。
引导学生进一步理解“照这样计算”的意思。
强调:可用线段图帮助理解。
教师要注意这种方法的叙述,方法不要求全体学生都掌握,主要掌握运算顺序。
4.巩固练习
  (1)根据老师提供的情景编题。A加减混合。乘车时的上下车问题,图书馆的借书还书问题,B速度、单价、工作效率
先个人编题,再两人交换。
小组合作,减少重复练习。
  (2)P5/做一做1、2
三、小结
学生就本节课的学习内容进行汇报。
这节课我们解决了很多问题,你们都有什么收获?
教师根据学生的回报选择性地板书。(尤其是关于运算顺序的)
运算顺序为已有知识基础,让学生进行回忆概括。
四、作业
   P8/1—4
板书设计:
四则运算(一)
1.滑冰场上午有72人,中午有44人离去,    2.“冰雪天地”3天接待987人。照这
又有85人到来。现在有多少人在滑冰?       样计算,6天预计接待多少人?
       72-44+85                           (1)987÷3×6    (2)6÷3×987
      =27+85                                  =329×6          =2×987
      =113(人)                              =1974(人)      =1974(人)
运算顺序:在没有括号的算式里,如果只有加、减法
或者只有乘、除法,都要从左往右按顺序计算。
第二课时:
教学内容:P6例3  P10/例4(含有两级运算或有括号的混合运算)
教学目标:
1.      使学生进一步掌握含有两级运算的运算顺序。
2.      让学生经历探索和交流解决实际问题的过程,感受解决问题的一些策略和方法,
学会用两步计算的方法解决一些实际问题。
    3. 使学生在解决实际问题的过程中,养成认真审题、独立思考等学习习惯。
教学过程:
一、主题图引入
观察主题图,找出条件,提出问题。
引导学生观察主题图。从图中你们都看到了什么?能提出什么数学问题?
二、新授
就学生提出的问题,出示例3 星期天,爸爸妈妈带着玲玲去“冰雪天地”游玩,购买门票需要花多少钱?
学生在练习本上解答此问题。
同桌两人说说自己是怎样解答的。
汇报:教师根据学生的汇报进行板书。
(1)24+24+24÷2
         =24+24+12
         =48+12
         =60(元)
24÷2是一张儿童票的价钱,是半价,所以用24÷2,前两个24是爸爸和妈妈的两张成人票的总价。两张成人票加上一张儿童票就是他们购买门票需要多少钱。
     (2)24×2+24÷2
         =48+12
         =60(元)
24×2是爸爸和妈妈两张成人票的总价,玲玲的儿童票用24÷2,再把三张门票的价钱加在一起就是总门票的价钱。
我们用不同的方法解决了同一个问题,这两个综合算式有什么共同特点?
这两个综合算式都是没有括号的,而且算式中有加减法也有乘除法。
这样的综合算式的运算顺序是什么?
学生总结运算顺序。
买3张成人票,付100元,应找回多少钱?
等等。
出示例4 上午冰雕区有游人180位,下午有270位。如果每30位游人需要一名保洁员,下午要比上午多派几名保洁员?
小组讨论,独立完成。
小组内互相说说你是怎样解答的?
汇报。
(1)270÷30-180÷30
    =9-6
    =3(名)
270÷30算出上午需要派几名保洁员;180÷30算出下午需要派几名保洁员,然后再用减法计算出下午比上午需要多派几名保洁员。
(2)(270-180)÷30
    =90÷30
    =3(名)
270-180算出下午比上午多出游人多少人,再除以30就算出了下午要比上午多派几名保洁员。
引导学生观察两个算是的不同点,以及运算顺序的不同。
学生进行小结。
教师根据学生的小结进行板书。
三、巩固练习
P7/做一做1、2
P11/做一做(完成书上的后,可以变化条件,如“买2副手套”等等。)
教师在练习的过程中应抓住学生的关键语言进行知识的巩固。
四、作业
P8—9/5—9
板书设计:
四则运算(二)
星期天,爸爸妈妈带着玲玲去“冰雪         上午冰雕区有游人180位,下午有270位。
天地”游玩,购买门票需要花多少钱?      如果每30位游人需要一名保洁员,下午要
(1)24+24+24÷2 (2)24×2+24÷2       比上午多派几名保洁员?
    =24+24+12        =48+12         (1)270÷30-180÷30 (2)(270-180)÷30
    =48+12           =60(元)          =9-6                 =90÷30
    =60(元)                           =3(名)             =3(名)
运算顺序:在没有括号的算式里,有乘、    运算顺序:算式里有括号,要先算括号里
除法和加、减法,要先算乘、除法。        面的。
第三课时:
教学内容:P11例5(强化小括号的作用)、归纳运算顺序
教学目标;
1.      使学生进一步掌握含有两级运算的运算顺序,正确计算三步式题。
2.      在学生的头脑中强化小括号的作用。
3.      在练习中总结归纳出四则混合运算的顺序。
教学过程:
一、复习引入
回忆前两节课的学习内容,回顾学习过的四则运算顺序。
前面我们学习了几种不同的四则运算,你们还记得吗?谁能说说你在前面都学会了哪些四则运算顺序?
根据学生的回答进行板书。
二、新授
出示例5
(1)42+6×(12-4)
(2)42+6×12-4
学生在练习本上独立解答。(画出顺序线)
两名学生板演。
全班学生进行检验。
上面的两道题数字、符号以及数字的顺序都没有改变,为什么两题的计算结果却不一样?
这几天我们一直都在说“四则运算”,到底什么是四则运算呢?
学生针对问题发表自己的意见。
概括:加法、减法、乘法和除法统称四则运算。(板书)
谁能把我们学习的四则运算的运算顺序帮我们大家来总结一下?
学生自由回答。
三、巩固练习
P12/做一做1、2
P14/4
教师巡视纠正。
四、作业
P14—15/2、3、5—7
板书设计:
四则运算(三)
(1)42+6×(12-4)      (2)42+6×12-4       运算顺序:
    =42+6×8                 =42+72-4          (1)在没有括号的算式里,如果
    =42+48                   =114-4         只有加、减法或者只有乘、除法,都
    =90                      =110           要从左往右按顺序计算。
                                               (2)在没有括号的算式里,有乘、
                                            除法和加、减法,要先算乘、除法。
                                               (3)算式里有括号的,要先算括
                                            号里面的。
加法、减法、乘法和除法统称四则运算。
课后小结:
第四课时:
教学内容:P13例6(0的运算)
教学目标:
    使学生掌握关于0的运算应该注意的问题。
教学重、难点:
0不能做除数及原因。
教学过程:
一、口算引入
快速口算
出示:
(1)100+0=
(2)0+568=
(3)0×78=
(4)154-0=
(5)0÷23=
(6)128-128=
(7)0÷76=
(8)235+0=
(9)99-0=
(10)49-49=
(11)0+319=
(12)0×29=
二、新授
将上面的口算进行分类
请你们根据分类的结果说一说关于0的运算都有哪些。
学生分类后进行概括总结关于0的运算。
教师根据学生的回答进行板书。
关于0的运算你还有什么想问的或想说的吗?
学生提出0是否可以做除数。
小组讨论:0能否做除数?
全班辩论。各自讲明自己的理由。
教师小结:0不能做除数。如5÷0不可能得到商,因为找不到一个数同0相乘得到5.0÷0不可能得到一个确定的商,因为任何数同0相乘都得0。
三、小结
学生小结关于0的运算应该注意的问题。
教师引导学生小结。
四、作业
P15—16/8—13
板书设计:
关于“0”的运算
100+0=100  235+0=235    一个数加上0,还得原数。               0能否做除数?
0+319=319  0+568=568                                           0不能做除数。
99-0=99  154-0=154      一个数减去0,还得这个数。
0×29=0  0×78=0        一个数乘0或0乘一个数,还得0。
0÷76=0  0÷23=0        0除以一个非0的数,,还得0。
49-49=0  128-128=0      被减数等于减数,差是0。
第二单元方向与位置
第二单元方向与位置
第一课时
教学目标:
1、通过具体的活动,认识方向与距离对确定位置的作用。
2、能根据任意方向和距离确定物体的位置。
3、发展学生的空间观念。
教学重点:能根据任意方向和距离确定物体的位置。
教学难点:对任意角度具体方向的准确描述。
教学过程:
一、设置情景
如果你是赛手,你将从大本营向什么方向行进?
你是怎样确定方向的?
小组讨论:
运用以前学过的知识得到大致方向。
①训练加方向标的意识:加个方向标有什么好处?
②突出以大本营为观测点:为什么把方向标画在大本营?
二、探究任意方向和距离确定物体的位置。质疑:
1、知道吐鲁番在大本营的东北方向就可以出发了吗?
2、如果这时就出发可能会发生什么情况?
小组讨论:沿什么方向走就能保证赛手更准确、更快的找到目标:地。
研究时,可以用上你手头的工具。吐鲁番在大本营东偏北30度
练一练:你说我摆,为小动物安家。
(课前剪好小图片,课上动手操作。)
例:我把熊猫的家安在    偏     ,      的方向上。
例:我把熊猫的家安在西偏北30度的方向上,熊猫摆在哪?
讨论:为什么猴子的家在西偏南30度,而小兔家在南偏西30度的方向? 解决问题,寻找得出距离的方法。如果你的赛车每小时行进200千米,你要走几小时能到达考察地?
图上没有直接标距离,你有什么办法解决它呢?
仔细观察地图,你发现了什么?
小组试一试解决。吐鲁番在大本营东偏北30度
三、练习:1、以雷达站为观测点,填一填。
护卫舰的位置是    偏      度,距离雷达站      千米。
巡洋舰的位置是    偏      度,距离雷达站      千米。
鱼雷艇的位置是    偏      度,距离雷达站      千米。
2、以电视塔为观测点,按要求填空。
文化广场在电视塔西偏南45度的方向;体育场在电视塔东偏南30度的方向;博物馆在电视塔东偏南60度的方向;动物园在电视塔北偏西40度的方向。
四、课后延伸
游乐场要新建两个游乐项目:一个在观览车西偏北40º方向上,约200米处新添一个“登月舱”,另一个“天外来客”在观览车南偏东20º方向上,约150米处。请你在平面图上标出这个新项目标:位置。
第二课时
教学目标:
1、能绘制平面示意图,通过制作平面图的过程,使学生知道如何根据方向和距离,在图上标出物体的位置。
2、通过绘制平面图,培养学生的动手操作能力。在活动中,培养学生合作探究的意识和能力。
3、通过解决问题,使学生体会所学知识在生活中的应用,增强学生学好数学的兴趣和意识。
教学过程:
一、复习引入合作绘图、练习巩固
目标:是通过看图回答问题,复习、巩固有关图上方向、角度、距离等知识,为下面自己绘制平面图作准备。
(1)停车场在广场的        方向,距离大约是         米。小红家在广场的    偏      方向,距离大约是         米。
(2)地铁站在广场东偏南45度方向,距离广场100米。你能在图上标出地铁站的位置吗?并说一说是怎么想的。
1、出示学校的录相或图片
问:学校中有哪些建筑?现在有一些数据,能根据这些数据将这些建筑物在平面图上标出来吗?出示数据:教学楼在校门的正北方向150米处。图书馆在校门的北偏东35度方向150米处。体育馆在校门的西偏北40度方向200米处。活动角在校门的东偏北15度方向50米处。
2、小组讨论:你们打算怎么完成任务?有什么问题要解决吗?
3、小组汇报完成平面图绘制的计划,教师进行梳理:
(1)绘制平面图的方法:
先确定平面图上的方向,再确定各建筑物的距离。如果学生没有说道,老师可以进行引导:你们打算怎样在图上表示出150米,200米和50米?从而帮助学生确定比例尺,和图上距离。
(2)小组合作完成,可以怎样分工,能在有限的时间内又好又快地完成任务。
4、小组活动,绘制平面图。
5、展示各组绘制的平面图,集体进行评议。
(1)评价绘制的正确性,如果平面图有问题,说一说问题是什么,应该怎样确定位置。
订正后交流:你们组认为在确定这点在图上的位置时,应注意什么?怎样确定?
教师小结:绘制平面图时,一般先确定角度,再确定图上的距离。
(2)比较各个平面图,为什么有的图大,有的图小?
小结:1厘米表示的大小不同,图的大小也不同。 练习:1、完成书上习题21页3、4题并订正。
二、在纸上设计小区,并说明各个建建筑的位置。
老师提供给学生一些建筑物的图片:如医院、学校、商店、银行、邮局、药店等
第三课时
教学目标:
1、通过教学使学生以不同的地点为观测点判断方向。
2、在学生学会确定任意方向的基础上,使学生体会位置关系的相对性。
3、“做一做”呈现了两名学生合作判断对方所在方向的活动情境,使学生进一步体会位置关系的相对性。
教学重点:为什么在描述两个城市位置关系的时候会有两种方式。
教学难点:使学生进一步认识到位置关系的相对性。
教学内容:第22页例3和做一做
教学过程:
一、创设情境引入新课
1、观察书上插图
小组讨论
(1)用自己已有的方位知识说一说这些城市的位置关系。
(2)讨论后每组选出一名同学在班内汇报。
2、汇报讨论结果
(1)首先找到北京和上海在地图上的位置。
(2)确定以谁为观测点。
(3)用语言描述北京和上海的具体位置。
(以北京为观测点,上海在北京的南偏东约30度的方向上。以上海为观测点,北京在上海的北偏西30度的方向上。)
3、答疑解难
(针对学生的具体情况进行解答,能在组内解决的在小组内解决,努内解决不了的老师解答。)
二、复习巩固
1、完成做一做
(1)组织学生做游戏(可两人一组也可四人一组)
(2)让每个学生充分参与到活动中来,人人开口说一说。
三、复习反馈
1、完成练习第1、2两题
2、当堂汇报
(北京在哈尔滨的南偏西的方向上,哈尔滨在北京的备偏东的方向上。)
(学校在我家的南偏西的方向上,距离约是900米。)(小刚)
(你家在学校的北偏西的方向上。)(小芳)

 
热门四年级相关范文