九年级数学《用频率估计概率》优秀教案
本节课所体现的研究理论:
1.学习主体即学生,通过亲身经历数学活动过程获得具有个性特征的感性认识、情感体验以及数学意识;
2.课标指出:教学活动应建立在学生认知发展水平和已有的知识经验基础之上,为学生提供充分从事数学活动的机会,帮助他们在自主探究和合作交流过程中真正理解和掌握数学知识技能、数学思想方法,提高数学学习兴趣和问题解决能力。因此,学生数学学习的过程是建立在经验基础之上的一个自我再创造(或创新构造)过程。在这一过程中,学生通过多样化的活动,不断获得、积累经验,分析、理解、反思经验,从而获得发展。
学习目标:
1.借助实验,体会随机事件在每一次实验中发生与否具有不确定性;
2.通过操作,体验重复实验的次数与事件发生的频率之间的关系;
3.通过对问题的分析,理解用频率来估计概率的方法,渗透转化和估算的思想方法;
4.通过对实际问题的分析,激发学习兴趣,体验数学的应用价值.
重点:能从频率值角度估计事件发生的概率.
难点:通过试验体会用频率估计概率的合理性.
温故篇
1.抛一次硬币,向上的一面是正面的概率是
2.掷一次骰子,向上的一面数字是6的概率是 .
3.从一副没有大小王的扑克牌中任抽一张,则抽到的牌面数字是5的概率为 .
4.某射击运动员射击一次,命中靶心的概率是 .
思考:当实验的所有结果不是有限个;或各种可能结果发生的可能性不相等时,又该如何求事件发生的概率呢? 引出课题——用频率估计概率
模拟实验——掷骰子
数学史实
人们在长期的实践中发现,在随机试验中,由于众多微小的偶然因素的影响,每次测得的结果虽不尽相同,但大量重复试验所得结果却能反应客观规律.即在做大量重复试验时,随着试验次数的增加,一个事件出现的频率,总是在一个固定数的附近摆动,显示出一定的稳定性.这就是频率稳定性定理.
是由瑞士数学家雅各布·伯努利最早发现的,他最早阐明了随着试验次数的增加频率稳定在概率附近.被公认为是概率论的先驱之一.
则估计抛掷一枚硬币正面朝上的概率约为 (精确到0.1)
则估计油菜籽发芽的概率为 (精确到0.1)
实践篇——估计移植成活率
某林业部门要考查某种幼树在一定条件下的移植成活率,应采用什么具体做法?
1.计算并填空;
2.观察在各次试验中得到的幼树成活的频率,谈谈你的看法.
3.由上表可以发现,幼树移植成活的频率在__左右摆动,并且随着移植棵数越来越大,这种规律愈加明显.
所以估计幼树移植成活的概率为__.
4.解决问题:
(1)林业部门种植了该幼树1000棵,估计能成活__棵.
(2)我们学校需种植这样的树苗100棵来绿化校园,则至少向林业部门购买约___棵.
巩固篇
1.在一个不透明的布袋中,红色、黑色、白色的小球共有40个,它们除颜色外其余都相同.小李通过多次摸球后发现其中摸到红色、黑色球的频率分别稳定在0.15和0.45,则估计袋中白色球的个数是( )
A.6 B.16 C.20 D.24
2.一水塘里有鲤鱼、鲫鱼、鲢鱼共1 000尾,一渔民通过多次捕获实验后发现:鲤鱼、鲫鱼出现的频率分别是31%和42%,则这个水塘里有鲤鱼_____尾,鲢鱼_____尾.
3.在有一个10万人的小镇,随机调查了2000人,其中有250人看中央电视台的早间新闻.
(1)在该镇随便问一个人,他看早间新闻的概率大约是多少?
(2)该镇看中央电视台早间新闻的大约是多少人?
应用篇——这个游戏公平吗?
小红和小明在操场上做游戏,他们先在地上画了半径分别为2m和3m的同心圆(如图),蒙上眼在一定距离外向圈内掷小石子,掷中阴影小红胜,掷中里面小圈小明胜,未掷入大圈内不算,你认为游戏公平吗?为什么?
提升篇
1.弄清了一种关系——频率与概率的关系.
当试验次数很多或试验时样本容量足够大时,一件事件发生的频率与相应的概率会非常接近.此时,我们可以用一件事件发生的频率来估计这一事件发生的概率.
2.了解了一种方法——用多次试验频率去估计概率.
3.体会了一种思想:用样本去估计总体 ;用频率去估计概率.
拓展篇
如图,长方形内有一不规则区域,现在玩投掷游戏,如果随机掷中长方形的300次中,有150次是落在不规则图形内.
(1)你能估计出掷中不规则图形的概率吗?
(2)若该长方形的面积为150平方米,试估计不规则
图形的面积.
课后拓展:
你能设计一个利用频率估计概率的实验方法估算该不规则图形的面积的方案吗?
课堂测评:
1.关于频率与概率的关系,下列说法正确的是( )
A.频率等于概率
B.当试验次数很大时,频率稳定在概率附近
C.当试验次数很大时,概率稳定在频率附近
D.试验得到的频率与概率不可能相等
2.做重复试验:抛掷同一枚啤酒瓶盖1000次,经过统计得“凸面向上”的频率约为0.44,则可以由此估计抛掷这枚啤酒瓶盖出现“凸面向上”的概率约为( )
A.0.22 B.0.44 C.0.50 D.0.56