八年级数学知识点梳理:不等式待定系数的取值范围


八年级数学知识点梳理:不等式待定系数的取值范围
不等式待定系数的取值范围
不等式待定系数的取值范围就是已知不等式或不等式组的解集或特殊解,确定不等式中未知数的系数的取值范围。
不等式待定系数的取值范围求法:
一、根据不等式(组)的解集确定字母取值范围
例:
如果关于x的不等式(a+1)x>2a+2.的解集为x<2,则a的取值范围是 ( )
A.a<0 B.a<一l C.a>l D.a>一l
解:将原不等式与其解集进行比较,发现在不等式的变形过程中运用了不等式的基本性质3,因此有a+l<0,得a<一1,故选B.
二、根据不等式组的整数解情况确定字母的取值范围
例:
已知不等式组
的整数解只有5、6。求a和b的范围.
解:解不等式组得
,借助于数轴,如图:
知: 2+a只能在4与5之间。
只能在6与7之间.
∴4≤2+a<5,6<
≤7
∴2≤a<3,13<b≤15
三、根据含未知数的代数式的符号确定字母的取值范围
例:
已知2a-3x+1=0,3b-2x-16=0,且a≤4<b,求x的取值范围.
解:由2a-3x+1=0,可得a=
;由3b-2x-16=0,可得b=
.
又a≤4<b,
所以,
≤4<

解得:-2<x≤3.
四、逆用不等式组解集求解
例:

 
热门八年级相关范文