八年级上册数学期末知识点:概率的初步认识、平面直角坐标系
第四章 概率的初步认识
4.1可能性的大小
游戏对双方公平是指双方获胜的可能性相同。
任意掷一枚均匀的硬币,会出现两种可能的结果:正面朝上,反面朝上.这两种结果出现的可能性相同,都是1/2。
4.2认识概率4.3简单的概率计算
一般地,在试验中,如果各种结果发生的可能性都相同,那么一个事件A发生的概率
P(A)=事件A可能发生的结果数/所有等可能结果的总数
①必然事件发生的概率为1,记作P(必然事件)=1;
②不可能事件的概率为0,记作P(不可能事件)=0;
③如果A为不确定事件,那么P(A)在0和1之间。
第五章 平面直角坐标系
5.1确定位置
引例:电影票、角、教室座位、经纬度
在平面上确定物体的位置一般需要两个数据a 和b 记作(a ,b),
a表示:排、行、经度、角度……
b表示:号、列、纬度、距离……
生活中还有哪些确定位置的其他方法?
(1)如果全班同学站成一列做早操,现在教师想找某个同学,是否还需要用2个数据呢?
(2)多层电影院确定座位位置用两个数据够用吗?
必须有三个数据(a,b,c),其中a表示层数,b表示排号,c表示座号,即“a层b排c号”。
(3)确定小区中住户的位置必须有四个数据,分别为楼号a,单元号b,层数c和住户号d,即“a楼b单元c层d号。”
(4)区域定位法:绘出所在区域代号如B3,D5等。排球比赛队员场上的位置等。
准确定位需几个独立数据?
(1)已知在某列或某行上,只需一个数据定位;
(2)在一个平面内确定物体位置,需两个数据;
(3)在空间中确定物体位置,需要三个独立数据。
5.2平面直角坐标系
1.平面直角坐标系:平面上互相垂直且有公共原点的两条数轴构成平面直角坐标系。
坐标原点(0,0),第一二三四象限,注意:坐标轴上的点不属于任何象限。
2.坐标:在平面直角坐标系中,一对有序实数可以确定一个点的位置;反之,任意一点的位置都可以用一对有序实数来表示。这样的有序实数对叫做点的坐标。
规律1:
⑴点P(x,y)在第一象限←→x>0,y>0;点P(x,y)在第二象限←→x<0,y>0;
点P(x,y)在第三象限←→x<0,y<0;点P(x,y)在第四象限←→x>0,y<0。
⑵x轴上的点的纵坐标为0,表示为(x,0),y轴上的点的横坐标为0,表示为(0,y)
点P(x,y)到x轴的距离为|y|,到y轴的距离为|x|,到原点的距离是 。
例:到x轴的距离为2,到,y轴的距离为3的点有________个,它们是________。
规律2:
⑴关于x轴对称的点的横坐标相同,纵坐标互为相反数;
⑵关于y轴对称的点的纵坐标相同,横坐标互为相反数;
⑶关于原点对称的点的横坐标、纵坐标都互为相反数。
⑷平行于x轴的直线上的点,其纵坐标相同,两点间的距离= ;
⑸平行于y轴的直线上的点,其横坐标相同,两点间的距离= ;
⑹一、三象限的角平分线上的点横坐标等于纵坐标,可记作:(m,m);
⑺二、四象限的角平分线上的点横坐标与纵坐标互为相反数,可记作:(m,-m)。
点拨:同一点在不同的平面直角坐标系中,其坐标不同;
根据实际需要,可以建适当的平面直角坐标系。