北师大版七年级数学上册第五章知识点汇总归纳
1.一元一次方程
1)概念:在一个方程中,只含有一个未知数,而且方程中的代数式都是整式,未知数的指数都是1,这样的方程叫做一元一次方程.
2)方程的解:使方程左、右两边的值相等的未知数的值,叫做方程的解.
3)等式的基本性质1:等式两边同时加(或减)同一个代数式,所得结果仍是等式。
等式的基本性质2:等式两边同时乘同一个数(或除以同一个不为0的数),所得结果仍是等式.
4)利用等式的基本性质解一元一次方程:利用等式的性质把方程ax+b=0(a≠0)进行变形,最后化为x=-b/a的形式,它一般先运用基本性质1,将ax+b=0变形为ax=-b,然后运用基本性质2,将ax=-b变形为x=-b/a即可。
2.求解一元一次方程
1)移项:方程中任何一项,都可以在改变符号后,从方程的一边移到另一边,这种变形叫做移项.(注意:移项要变号)
2)解一元一次方程的基本思想:根据等式的基本性质把一元一次方程化简为ax=b(a,b为常数,且a≠0)的形式,再得到方程的解为x=b/a.
3)解一元一次方程的一般步骤:去分母、去括号、移项、合并同类项、未知数的系数化为1
3.列一元一次方程解应用题
步骤:审清题意、找出等量关系、设未知数、列一元一次方程、解一元一次方程、检验解的合理性、写出答案.
七上第六章 数据的收集与整理
1.数据的收集
1)方式:问卷调查、访谈、查阅资料、实地调查、试验、网上搜索等(根据具体情况合理地选择数据收集的方式).
2)步骤:(1)明确调查的问题和目的;(2)确定调查对象;(3)选择调查方式;(4)设计调查问题;(5)展开调查;(6)收集并整理数据;(7)分析数据,得出结论.
2.普查和抽样调查
1)普查:对所有考察对象进行全面调查叫普查
优点:可以直接获得总体情况;
缺点:总体中个体数目较多时,普查的工作量较大.
2)总体:所要考察的对象的全体叫总体
个体:组成总体的每一个考察对象叫做个体
1)抽样调查:从总体中抽取部分个体进行调查,这种调查叫做抽样调查
优点:调查范围小,节省时间、人力、物力及财力
缺点:没有普查得到的结果准确
样本:从总体中抽取的部分个体叫做总体的一个样本,为了获得较为准确的调查结果,抽样时要注意样本的代表性和广泛性.
3.数据的表示
1)扇形统计图
概念:用圆代表总体,圆中的各个扇形分别代表总体中的不同部分,扇形的大小反映部分占总体的百分比的大小.
特点:(1)反映具体问题中的部分与总体的数量关系.
(2)只能得到各部分的百分比,得不到具体数量.
(3)在扇形统计图中,每部分占总体的百分比等于该部分所对应的扇形圆心角的度数与360度的比.
绘制扇形统计图的步骤:计算各部分占总体的百分比
计算各部分对应的扇形的圆心角的度数
画出扇形统计图,表上百分比
写出扇形统计图的名称
2)条形统计图:一般是由两条互相垂直的数轴和若干长方形组成,两条数轴分别表示两个不同的项目,长方形的高表示其中一个项目的数据.
特点:能清楚地表示出每个项目的具体数据.
3)频数直方图
(1)频数:在数据统计中每个对象出现的次数称为频数
(2)注意:频数能反映每个对象出现的频繁程度;所有对象的频数之和等于数据总数.
(3)绘制频数直方图的步骤:计算所给数据的最大值与最小值的差;决定组距和组数;确定分点;列频数分布表;绘制频数直方图
(4)频数直方图是一种特殊的条形统计图,它将统计对象的数据进行了分组,画在横轴上;纵轴(即长方形的高)表示各组数据的频数.
(5)频数直方图的优点:能更清晰、更直观地反映数据的整体状况.
4)折线统计图:用折线的起伏表示数据的增减变化.
4.统计图的选择
条形统计图:清楚地表示每个项目的具体数目
折线统计图:清楚地反映事物的变化情况
扇形统计图:清楚地表示出各部分在总体中所占的百分比
频数直方图: 能更清晰、更直观地反映数据的整体状况.