人教版六年级下册数学第六单元《整理和复习》教学设计


人教版六年级下册数学第六单元《整理和复习》教学设计
【教学目标】
1.比较系统地掌握有关整数、小数、分数和百分数、负数、比和比例、方程的基础知识;能比较熟练地进行整数、小数
、分数的四则运算;能进行整数和小数加、减、乘、除的估算;会使用学过的简便运算,合理、灵活地进行简算;会解
方程;养成检查和验算的习惯。
2.巩固常用计量单位的对象,掌握所学的单位间的进率,能够简单的改写。
3.掌握所学的几何图形的特征;能够比较熟悉地计算一些几何图形的周长、面积和体积,并能应用;巩固所学的简单画
图、测量等技能;巩固对轴对称图形的认识,会画一个图形的对称轴,掌握图形的平移旋转的方法;能用数对,会根据
方向和距离确定物体的位置,掌握有关比例尺的知识,并能应用。
4.掌握所学的统计初步认识,能够画出简单的统计图表,能够根据数据做出简单的判断与预测,会求一些简单事物的可
能性,能够解决一些计算平均数的问题。
5.进一步感受数学知识间的内在联系,体会数学的作用;掌握所学的常见的数量关系和解决问题的思考方法,能够比较
灵活地运用所学知识解决生活中的一些简单的实际问题。
【重点难点】
知识的全面性与系统性,查漏补缺。
【教学指导】
1.加强整理和复习的系统性。我们知道,数学知识的特点之一就是具有严密的逻辑系统性。虽说我们在前面的学习过程
中,每个单元、每个学期,都有整理和复习,但毕竟具有一定的局限性。本单元在平时学习的基础上,在更大范围内引
导学生对学过的知识进行更全面的回顾、整理和比较、对照。这样原来分散学习时互不联系或联系较少的知识,就有机
会得以沟通,形成纵横联系的知识体系。因此加强整理和复习的系统性,使所学的知识结构化是本单元的首要任务。
2.启发、引导学生自己整理知识。如前所述,本单元教材所采取的精简篇幅,是突出重点、要点的做法,为教师启发、
引导学生自己整理知识创造了条件。复习时,应充分的利用教材的留白,发挥学生参与知识的主动性和积极性。有时,
学生的整理不够准确,不够全面,这都是真实的、自然的现象,教师在学生开动脑筋深有体会的基础上加以点拨,往往
效果更好,不仅能加深学生的印象,记得牢,还有助于培养并提高学生的学习能力,因为知识的整理和复习也是学习能
力的重要组成部分之一。
本单元复习的内容涉及面广,而且又是逐年学习的,如果在课堂上进行逐项回忆,常常花费的时间多。因此,在课堂上
复习各部分内容之前,可以布置学生先预习。课前预习可以让每一位学生都有较充足的时间,有利于提高学生复习的主
动性,也有利于提高课堂复习的效率。
3.在系统整理和复习的过程中注意查漏补缺。在本单元的教学过程中,教师应根据前一段课堂教学、批改作业和课后辅
导中了解到的情况,搞清学生还有哪些概念比较模糊,哪些方法不够熟练,哪些疑难尚未解决,在系统复习的过程中予
以弥补。通过知识的再认、再现和质疑熟练起来。可以说,所学知识与技能的巩固,是灵活应用于提高能力的基础,也
是系统整理和复习的基本要求之一。
4.加强练习的针对性、有效性。本单元教材所提供的练习,是根据一般情况配备的,教师要善于从本班学生的实际情况
出发,有针对性地练习并加以适当的调整和增补,同时要注意因材施教,对不同情况的学生提出不同的练习要求,使各
种程度的学生都能通过练习确有所获,并都能在原有的基础上有所提高。
5.注意引导学生积累数学学习的经验,总结解决问题的策略。
本单元教材,基于复习整理解决问题的思路和方法,设计了一系列的例题,并配备了必要的练习。教学时,教师要善于
就题论理、论思路,引导学生总结比较一般的解题策略,以促进知识的迁移和能力的提高。同时,教师还应该通过多种
途径,如课内学生的发言、小组讨论、课后的作业批改、个别交流等了解学生的学习体会,发现他们的学习经验,在班
上交流或介绍。经验表明,六年级的整理和复习阶段,是小学生形成总结学习经验的有利时机,利用这个时机,帮助学
生总结个人经验,分享他人经验,有利于学生的发展,有利于提高本单元的教学成效。
【课时安排】建议共分27课时:
1.数与代数………………………………………………………………11课时
2.图形与几何……………………………………………………………6课时
3.统计与概率……………………………………………………………4课时
4.数学思考………………………………………………………………2课时
5.综合与实践……………………………………………………………4课时
【知识结构】
1.数与代数
第1课时  数的认识(1)
【教学内容】
数的认识(1)。
【教学目标】
使学生比较系统地掌握有关整数、分数、小数、百分数和负数的基础知识,进一步弄清概念间的联系和区别。
【重点难点】
1.使学生比较系统的掌握自然数和整数的基础知识。
2.弄清概念间的联系和区别。
【教学准备】
多媒体课件,实物投影。

【谈话导入】
1.教师:同学们,谁能说一说小学六年中我们都学过哪些数?你能举出生活中利用这些数的例子吗?说明每个数的具体
含义。
请学生拿出课前收集的数据来汇报,指名在黑板上写下这些数。
其他同学注意倾听,听一听数读得是否正确,看一看黑板上的数写得对不对。
2.教师用课件出示一组数,弥补学生的不足。
(课件出示:
如:珠穆朗玛峰高达8844.43m。
南极洲年平均气温只有-25℃。
今年我市空气质量达到良好的天数占全年的 。
这本词典有1722页。
一条围巾的成分:羊毛40%、化纤60%。)
3.把黑板上的数分一分类。

4.揭示课题。
同学们回答得很正确,这就是我们在小学阶段学习的几种数,这几节课我们就把这几种数的意义和有关知识进行整理和
复习,我们今天先复习自然数和整数。(板书课题:数的认识)
【归纳整理】
自然数和整数。
1.教师提问:什么样的数是自然数?0表示什么?有没有最小的自然数?有没有最大的自然数?
根据学生的回答,教师板书:
2.教师提问:谁知道我们学习的哪些数是整数?
学生回答后,教师提出问题:能不能说整数就是自然数?让学生想一想,议一议,说一说。
教师向学生说明:我们小学阶段学习的整数,除了自然数,还学习了一些小于零的整数即负整数,这些负整数到中学要
更深入的学习。
结合上面的复习和板书,将板书补充成如下形式:

3.小组整理数的其他知识。提问:关于数的知识你还知道哪些?
(1)学生自由发言。
(2)小组合作学习,重点讨论下面的问题。(出示讨论题)
a.什么是十进制计数法?
b.你能说出哪些计数单位?
c.怎样比较两个数的大小?
d.说一说因数、倍数、质数、合数各自的含义。
根据学生的回答教师完成整数、小数的数位顺序表。
教师说明:整数和小数都是按十进制计数法写出得数,其中个、十、百……以及十分之一、百分之一……都是计数单位
。各个计数单位所站的位置,叫做数位。数位是按一定的顺序排列的。
练一练:填空(口答)。
27046=2×(    )+7×(    )+0×(    )+4×(    )+6×(    )
说出4004.04这个数中的三个“4”分别在什么数位上,各表示什么,这个数中的三个“0”各起什么作用?
4.怎样比较两个数的大小?举例说明。
引导学生从整数、小数、分数三个方面回答。
整数、小数的比较方法。
比较分数大小的方法,从同分母、同分子、异分母三个方面小结。教师逐一指名回答。
提问:非0自然数有几种常用的分类方法,分类的依据是什么?
学生边回答教师边板书:非零自然数根据是不是2的倍数,分成偶数和奇数;根据所含因数的个数,分成
1、        质数和合数。
板书:

回答:什么是奇数、偶数?什么是质数、合数?
教师指名一一回答,并要求学生记住100以内质数表。
【课堂作业】
教材73页第3~5题。
学生独立完成并在小组中相互交流,教师巡视并针对具体情况进行指导。
【课堂小结】
通过复习,请你们把自然数和整数的有关知识整理一下并在小组中交流。
【课后作业】
完成练习册中本课时的练习。
第2课时  数的认识(2)

【教学内容】
数的认识(2)。
【教学目标】
使学生逐步学会整理的方法,不断提高思维的灵活性。
【重点难点】
1.使学生比较系统地掌握自然数和整数的基础知识。
2.弄清概念间的联系和区别。
【教学准备】
多媒体课件。

【谈话导入】
上一节课我们分析了自然数和整数,今天来我们回忆下数的另一个重要部分。
【归纳整理】
分数和小数。
1.组织学生分组活动,复习有关分数的知识。
2.每个小组选一个代表发言,展示整理和复习的结果。
教师结合各个小组整理和复习的情况,及时予以肯定和鼓励,并注意突出“分数的意义、分数单位和分数与除法的关系
”,同时还可以做如下板书:
分数和除法的关系:a÷b= (b≠0)

3.通过直观图形,导入对小数意义的整理和复习。出示下面各图形,要求学生分别用分数和小数表示图中阴影部。
      
4.教师提出以下问题,让学生分小组讨论。
(1)什么样的数可以用小数表示?
(2)小数和分数有什么关系?
(3)什么是循环小数?循环小数可以怎样写?小数是不是都小于1?
5.组织各小组对上面提出的问题发表看法,教师板书如下:

6.分数的基本性质和小数的基本性质有什么关系?小数点移动位置,小数的大小会发生什么变化?
分别说出分数的基本性质、小数的基本性质的内容是什么?举例说明。
板书:0.1=0.10=0.100=……     =……
分数的基本性质和小数的基本性质有什么关系?
(因为小数可以看做分母是10、100、1000……的分数,所以小数的基本性质是分数的基本性质的特殊情况。)
练习:填空(口答)。

做一做,说一说。引导学生说出小数点的位置移动,引出小数大小变化的规律。
下面这组数有什么特点?他们有什么规律?
0.108    1.08    10.8     108    1080
【课堂作业】
教材74~75页练习十四第2、3、7题。
学生独立完成并在小组中相互交流,教师巡视并针对具体情况进行指导。
【课堂小结】
通过复习,请你们把分数和小数的有关知识整理一下并在小组中交流。
【课后作业】
完成练习册中本课时的练习。

第3课时  数的认识(3)

【教学内容】
数的认识(3)。
【教学目标】
通过整理和复习,使学生感悟数学知识之间的内在联系。
【重点难点】
1.使学生比较系统的掌握百分数的基础知识。
2.弄清数的认识间的联系和区别。
【教学准备】
多媒体课件。

【谈话导入】
今天是数的认识的最后一节课,主要归纳一下有关百分数的知识。
【归纳整理】
百分数
(1)教师指着黑板上的板书:自然数、整数、分数、小数、百分数。
提问:我们已整理、复习了有关自然数、整数、分数、小数的知识,谁能说一说,这节课的学习任务已经完成了百分之
几?还有百分之几没有完成?
(2)结合刚才的回答,谁能说一说:什么样的数叫做百分数?
(3)“一节课的任务已经完成了80%”也可以说“已经完成了 ”,我们能不能因此就说百分数和分数的意义完全相同
呢?
请同学们议一议:百分数和分数有什么区别与联系?
结合学生的回答,教师板书:百分数常用%来表示。百分数只表示一个数是另一个数的百分之几,不表示具体的数量,
百分数与分数的意义不完全相同。
(4)学生质疑,师生共同解疑。
【课堂作业】
教材73页“做一做”。
学生分小组交流,代表汇报。
【课堂小结】
通过复习,请你们把数的认识的有关知识整理一下并在小组中交流。
【课后作业】
完成练习册中本课时的练习。

第3课时 数的认识(3)
自然数  整数  分数  小数  百分数  
百分数常用%来表示。百分数只表示一个数是另一个数的百分之几,不表示具体的数量,百分数与分数的意义不完全相
同。
第4课时  数的运算(1)

【教学内容】
数的运算(1)。
【教学目标】
1.归纳整理整数、小数、分数计算法则的异同点,进一步总结计算时应遵循的一般规律及四则运算中的一些特殊情况。
2.培养学生运用法则熟练计算的能力和对学过知识进行归纳整理、比较异同、形成知识结构的能力。
3.引导学生探索知识间的内在联系,认识事物本质。
【重点难点】
1.整理四则运算的意义及计算法则。
2.对四则运算法则本质的认识和理解。
【教学准备】
多媒体课件,实物投影。

【谈话导入】
创设情境。
(1)教师:“六一”快到了。同学们为欢庆“六一”在精心准备,瞧,有的折幸运星,有的做蝴蝶结,有的用彩带做
中国结,还有的买来了矿泉水,真热闹,我们一起去看看吧!
(2)多媒体课件出示教师创设的问题情境。
如下所示:(有条件的教师可通过这些问题创设情境图)
①同学们折了37颗红星,23颗蓝星,一共折了多少颗星?
②同学们买了40瓶矿泉水,每瓶0.9元,一共要付多少钱?
③有24m的彩带,用 做蝴蝶结,做蝴蝶结用去了多少米?
④有24米的彩带,用 做中国结。做中国结用去了多少米?教师组织学生分小组讨论这些问题。
(3)教师:在解决问题中,你们使用了哪些运算?
学生可能说出:加法、减法、乘法、除法。
【复习讲授】
1.复习整理四则运算的意义。
(1)学生自己编题并列式回答。(写在练习本上)
(2)小组合作学习,教师要求小组同学互相补充纠正编题和列式出现的错误。说出运用了哪种运算,这种运算的意义
是什么?
(3)小组汇报,其他同学注意补充纠正。说说用到的每种运算的意义是什么?
教师板书
28+36=      36-28=     36÷28=    28÷36=     
0.9×40=     40÷0.9=    24×12=    12÷24=
        
(4)根据同学们的回答,指名说说整数、小数、分数的哪些运算的意义相同?哪些意义有扩展?
(5)你能用图示的形式表示出四则运算之间的关系吗?
师生总结:

2.整理四则运算的法则。
(1)复习加法和减法的法则。
①出示三道题,请学生分析错误的原因并改正。

学生观察后回答,指出错误分别是:相同数位没有对齐,小数点没有对齐,没有通分。
②三条法则分别是怎样的?(相同数位对齐,小数点对齐,分母相同时才能直接相加减。)
③前两条法则的要求反映了一条什么样的共同规律?能用一句话概括吗?(相同数位上的数才能相加减。)
(2)复习整数乘法和除法的法则。
①出示两道题:对照下面两道题,口述整数乘法和除法的计算法则。

②把上面两道题改编成小数乘除法。
1.42×2.3,4.282÷1.23,让学生在整数计算的结果上确定小数点的位置。
③教师:通过上面的计算,你们发现小数乘除法与整数乘除法有什么相同点和不同点?(相同点:小数乘除法先按整数
乘除法法则计算,小数除法把分数转化成整数后,也按整数乘除法法则计算。不同点:小数乘除法还要在结果上确定小
数点的位置。)
(3)复习分数乘法和除法的法则。
①课件出示
      
指名说一说分数乘法和除法的计算方法是什么?
②分数乘法和除法在计算方法上又有什么相似点和不同点?(相似点是分数除法要转化成分数乘法计算;不同点是分数
除法转化后乘的是除数的倒数。)
3.完成教材第76页的“做一做”。
计算后说一说计算时需要注意什么?
73.05-3.96(小数点对齐)
27.5×1.4(积是两位小数)
3.12÷15+4.71(0占位)
12.5×28-19.3(先乘法后减法)
(要先通分)
(转化成分数乘法一次性计算)

答案:69.09   38.5   4.918   330.7              
【课堂小结】
通过这节课的学习你又有哪些收获?
【课后作业】
完成练习册中本课时的练习。

第4课时数的运算(1)

第5课时 数的运算(2)

【教学内容】
数的运算(2)
【教学目标】
1.通过复习使学生熟练地掌握四则运算定律和性质,能应用运算定律进行简便运算。
2.能正确地掌握四则混合运算的运算顺序,并较熟练的进行计算。
3.通过探索运算定律的应用等数学活动,让学生体验数学的作用,培养学生的应用意识。
4.经历四则混合运算的简便过程,体验迁移的学习方法。
5.在学习活动中,体验数学知识之间的内在联系,感受数学的优化思想,培养学生观察发现和应用知识的能力。
【重点难点】
1.整理四则运算的运算顺序和运算定律。
2.能够准确灵活地选择简便方法。
【教学准备】
多媒体课件、实物投影。

【谈话导入】
同学们,请你们回忆一下,我们学习了六年,已经学习了几级运算?几种运算?还记得混合运算的运算顺序和运算定律
吗?
这节课,我们就来系统的复习一下吧。
【复习讲授】
1.复习四则运算的顺序:
课件出示:
5400-2940÷28×27         
教师:这是两道四则混合运算的题,说说这两道计算题的运算顺序是什么?谁能说说四则混合运算的运算顺序是什么?
根据学生的回答板书:

2.复习简便运算:
课件出示:
3.87+2.99             75.2-19.8
10.47-5.68-1.32       5.39-2.88-1.39
4.37+ +0.63+        1.25×72
38×56+44×38        94×101
提问:把简算的式题进行分类,怎么分?
学生分类后汇报,说一说为什么这么分?
(1)加上或减去接近整数、整十数的运算。
3.87+2.99            75.2-19.8
=3.87+3-0.01         =75.2-20+0.2
先让学生说出简便方法,教师再总结:像这类题目简算的时候一般先加上或减去整数,多加了几就减几,多减了几就加
几。
(2)根据加法交换律和结合律,使运算简便。
指名说出结合律和交换律的内容并用字母表示。
板书:a+b=b+a     (a+b)+c=a+(b+c)
计算下面的题。
4.37+ +0.63+
指名板演,其余的学生做在练习本上。教师提问这样结合的目的是什么?(凑整)
(3)根据减法性质,使运算简便。让学生说出减法的性质内容并用字母表示。
板书:a-b-c=a-(b+c)      a-b-c=a-c-b
学生做下面的题:
10.47-5.68-1.32          5.39-2.88-1.39
一人板演,其余的同学做在练习本上,做完后集体订正。
教师:为什么要把后面两个数加起来?(凑整,也就是必须在能凑整的情况下才能用这个性质,否则就弄巧成拙了。第
二个题目交换位置也是为了凑整,所以一道题到底怎样计算简便还是要认真分析题目的特征,再选择适当的性质来计算
。)
(4)根据乘法的交换律、结合律、分配律使运算简便。让学生说说交换律、结合律、分配律的内容并用字母表示。
板书:a×b=b×a    a×b×c=a×(b×c)
(a+b)×c=a×c+b×c
1.25×72    38×56+44×38    94×101
教师:这三道题各应怎样简便运算?请三名学生板演,其余的同学做在练习本上。做完后集体订正,说说你的理由。
1.25×72
=1.25×8×9
(算式中有125应想到8,因为125×8=1000,乘积得整百整千的数,算起来方便。)
38×56+44×38
=38×(56+44)
(两个不同的因数相加组成整十、整百、整千的数,这样计算起来简便。)
94×101
=94×(100+1)=94×100+94×1
(一个因数接近整十、整百,拆成和或差的形式。)
(5)教师:我们已经回顾了加法、减法、乘法的运算定律和性质,除法又有哪些运算性质呢?
学生回答,教师整理。
除法的运算性质(除数不为0):
板书:
a÷(b×c)=a÷b÷c    a÷(b÷c)=a÷b×c
3900÷(39×25)       5700÷(57÷9)
先让学生利用性质进行计算,并请两名学生板演,做完后集体订正。
3900÷(39×25)         5700÷(57÷9)
=3900÷39÷25           =5700÷57×9
=100÷25                =100×9
=4                      =900
3.课件出示。
例1:计算:4×
让学生观察这道题中的数有什么特点。
提问:混合运算的运算顺序是什么?这道题在计算时用到了哪些运算定律?
让学生独立完成。
【课堂作业】
1.完成教材第77页下面的“做一做”的题。
教师巡视,进行个别辅导。
2.用简便方法计算下面各题:

答案

【课堂小结】
通过这节课的学习活动,你有什么收获?
【课后作业】
完成练习册中本课时的练习。
第6课时  数的运算(3)

【教学内容】
数的运算(3)。
【教学目标】
1.使学生进一步理解、掌握运用分数乘、除法知识解决有关问题,发展应用意识。
2.形成解决问题的一些策略、方法,提高学生分析问题和解决问题的能力。
【重点难点】
掌握应用题的一般解题步骤。
【教学准备】
多媒体课件。

【复习回顾】
复习简单应用题。
(1)        算一算。

过程要求:
①        利用计算卡片逐一出示算式。
②        学生口算,直接说出计算结果。
③ 选择部分算式要求学生说一说过程与方法。
(2)下面各题只列式不计算。
①六年级学生为灾区捐款,六年级(一)班捐款105元,六年级(二)班捐款98元。两个班一共捐款多少元?
②        学校图书馆买来150本故事书,借给五年级(一)班48本,还剩多少本?
③农具厂每天能够生产56件农具,7天能够生产多少件农具?
④水果店有24筐苹果,要6天卖完,平均每天要卖多少筐苹果?
⑤成绩展览会上要展出48本大字本,每张桌子上放8本,需要几张桌子?
⑥五年级有学生136人,其中5/8是女生,女生有多少人?
教师:逐一指名列式,并要求说出为什么要这样列式,它表示的是什么意义?(说出加、减、乘、除。)
教师小结:这些都是一些简单的应用题,从以上的应用题可以看出,简单应用题都是由两个已知条件和一个问题组成的
,而且问题与两个已知条件都是直接相关的。也就是说,都是可以由已知条件经过一步计算直接求出答案。如果是一道
复合应用题我们又该怎样入手呢?怎样熟练地掌握解题技巧呢?
【课堂作业】
教材78页“做一做”第1题。
让学生独立完成,再让学生说一说是怎样分析数量关系的? 计算时需要注意什么?
答案:(16.5-15)÷15=0.1=10%
【课堂小结】
通过这节课的学习,你对于解决问题的困惑解除了吗?说一说你有哪些收获?
【课后作业】
完成练习册中本课时的练习。

第6课时数的运算(3)
解决问题的一般步骤是:
首先,理解题意,找出已知信息和所求问题;
其次,分析数量关系,确定先算什么,再算什么,最后算什么;
再次,确定每一步该怎样算,列出算式,算出得数;
最后,进行检验,写出答案。检验是解决问题的一个步骤,要养成检验的好习惯。

 
热门六年级相关范文