《通分》课堂实录


 一、创设问题情境,激发兴趣。
  师:老师们都说我们班的同学聪明好学,我也有同样的看法。今天老师带来了一个难题,同学们想不想帮老师解决?(生齐说:想!)
  师:昨天我刚到家门口就听到大牛和小牛在一起争吵,大牛说:妈妈向着你,她为什么把西瓜的2/5给你,而我只吃西瓜的1/2呢?小牛说:你分得多。到底谁分得多?同学们帮他们分一分好吗?
  生:好!
  二、小组合作学习
  三、汇报交流
  师:同学们分好了吗?哪个组先起来说一说?
  生1:大牛分得多。为什么呢?在2/5和1/2这两个分数中,分子和分母都不相同,要想比出它们的大小,就要把分母化成相同的数,还不能改变分数的大小。这个相同的数也就是它们的最小公倍数,因为2和5是互质数,所以它们的最小公倍数就是它两个的积(10),先把它们化成分母是10的分数,那就是2/5=4/10,1/2=5/10,因为5/10>4/10,所以2/5<1/2,所以说,大牛分得西瓜大。
  师:哪个组还想起来说?
  生2:同生1。
  师:大牛分的西瓜多,小牛分的西瓜少,小牛心里很不高兴,于是,他说:大牛,我吃2/3,你吃1/12,剩下的1/4给妈妈,你看行吗?大牛说:行!同学们,这一次谁分的瓜多?再为他们分一次好吗?
  小组再次合作探究。
  汇报交流:
  生1:小牛的西瓜多,大牛的西瓜少。因为2/3,1/12,1/4这三个分数的分子、分母不同,先把它们化成同分母的分数,这个相同的分母也就是它们的公倍数12,即:2/3=8/12,1/4=3/12,因为8/12〉3/12〉1/12,所以2/3〉1/4〉1/12。也就是说小牛分的瓜多。
  师:哪个组还想起来说?
  生2:老师,我们把分子化成了相等的数,来比较它们的大小,行吗?
  师:说说看。
  生2:我们是把分子化成了2,也就是1/12=2/24,1/4=2/8,因为分子相同的分数,分母越小,分数值越大,所以,2/3〉2/8〉2/24,即2/3>1/4>1/12,可见,小牛分的瓜多。
  师:同学们说他们组把分子化成相同的数来比较分数的大小,可以吗?
  生:可以。
  师:相比较而言,把分母化成相同的数来比较分数的大小会更方便。我们把2/3,1/4。1/12分别化成8/12,3/12,1/12的过程叫做通分。(板书:通分)
  师:根据刚才你们的讨论,想想什么叫做通分?
  生:把不同分母的分数化成和原来分数相等的同分母分数,叫做通分。
  四、练习设计
  师:好。同学们没有问题了,现在老师检查一下同学们的学习情况。
  1、在()里填上>、<或=
  2/3()1/45/79()15/213/4()2/52a/b()3a/b
  学生主动讨论后集体订正
  [对于2a/b()3a/b这一小题,学生有争议。]
  生:老师,2a/b和3a/b无法比较,b应该有限制条件,不为0,如果b是0这个算式无意义。
  师:同学们认为呢?(生:对!)
  生1:a可以是小数吗?
  生2:可以。假设a是0.1,那么就是0.3/b和0.2/b,都可以变成除法做。
  2、在()里填上合适的数
  1/6<()<1/5
  师:讨论好了吗?哪个小组想说?
  生:可以填11/60,把分子分母通分,变成60,1/6=10/60,1/5=12/60,所以中间应该填11/60。
  生:如果分子可以是小数,我认为这个答案很多,可以填5.1/30,5.2/30……
  3、一通油用去它的1/3还多4升,还剩下这桶油的一半,这桶油原来有多少升?
  学生讨论
  生:因为剩下的是一半,也就是说,用去油的1/3,再加上多了的4升,也是一半,剩下的也应该是油的1/3再加4升。不难看出,这桶油里面有2个1/3和2个4升。也就是说8升就是这桶油的1/3。1桶油里面有3个1/3,1个1/3是8升,那么3个1/3就是3个8升,应该是24升。
  生:用了1/3还多4升,剩下了一半,也就是说用去了1/2,而1/2比它的1/3多4升,也就是1/2-1/3就是4升,结果是4除以1/6等于24升。那么这桶油就是24升。
  

 
热门小学数学相关范文