三角形的面积一课是建立在长方形面积计算的基础上的,重点是推导三角形的面积计算公式。依据儿童从直观的动作思维到具体的形象思维,最后达到抽象的逻辑思维的认知规律,所引入生活中的数学问题,通过学生操作学具,把动手操作、动脑思考、动口表达结合起来,在操作中使操作与思维紧密结合,从而提高逻辑思维能力。
在课堂教学中,我让学生回忆平行四边形、正方形、长方形的面积计算公式,并将手中的一个平行四边形沿对角线剪开,使其成为两个完全一样的三角形,然后让学生猜测三角形的面积计算公式,在学生猜测的基础上教师顺势利导,三角形的面积是真的是平行四边形面积的一半吗?三角形与平行四边形之间有什么联系呢?今天我们就一起来研究。
紧接着我引导学生拿出事先准备好的一组完全一样的三角形进行小组操作,并让学生在操作中解决相关的问题
(1)任意两个三角形都能拼成一个平行四边形吗?
(2)拼成的平行四边形与原三角形的底和高有什么关系?
(3)任意一个三角形的面积都可以用S=ah2 来计算吗?你是怎么想的?
学生在操作和交流中度过,在这个过程里,学生明白了并不是所有的三角形都可以拼成平行四边形,而必须是完全一样的两个三角形才可以拼成一个平行四边形,平行四边形与三角形之间是等底等高的,面积刚好相差一半,也就是等底等高的三角形面积是平行四边形面积的一半。学生在操作中深切的体会到了两者之间的关系,从猜测到操作,从操作中发现并验证了三角形面积计算公式,学生充分体验到了成功带来的愉悦,极大的激发了学生学习数学的积极性,并近一步培养了学生从小养成从猜测到验证的良好学习习惯。
这节课也存在一些不足之处,如本节课的基本数学思想应该是转化的数学思想方法,也就是把计算三角形的面积转化为学生已学过的平行四边形的面积来思考,从而推导出三角形面积的计算公式。从教学形式上看,我基本已经作到了,但是,要知道教学目的不仅是教学生学会知识,更重要的是教学生学会学习的方法。因此,本课的总结中我应该点出:这样的思考方法在数学上叫做转化。当我们遇到一个新问题时,就可以动脑筋把它转化成我们以前学过的旧知识。这样就起到了画龙点睛的作用,可惜我疏忽了。因此在以后的教学中应注意对学生思维品质的提升,而不单单是知识的传授。