《圆柱的表面积》课后反思
为了能充体现新课程理念,促进学生的发展,教学过程中我精心安排了观察、操作、讨论交流、应用等教学活动,同时积极营造愉快、民主、轻松、和谐的学习氛围。反思整堂课程教学主要围绕以下几点展开:
一、打破传统教学,灵活合理地重组教材
“圆柱的表面积”这部分数学内容包括:圆柱的侧面积、表面积的计算、表面积在实际计算中的应用。教材安排了一道生活例题,分步教学。备课时,我打破了传统的教学程序,将这些内容重新组合,合理把握教材,力争有效的完成教学任务。首先将侧面积计算方法的推导作为教学难点来突破:后将表面积的计算作为了重点来教学;将表面积的实际应用作为重点来练习。三者有机结合、相互联系、多而不乱。教学设计和安排既源于教材,又不同与教材。例题并没有专门的教学,但其指导思想和目的要求分别在教学过程中得以体现。整个一节课,增加容量但又学得轻松,极大提高了课堂教学效率。
二、充分发挥教师主导与学生主体作用的统一。
本节课在教学上采用了引导—合作—引导的方法,通过教师的“导”,鼓励学生积极、主动地探求新知。
1、 直观演示与实际操作结合
新课开始,教师通过圆柱教具直观演示,引导学生复习圆柱体的特征,进而理解圆柱体表面积的意义。在教学侧面积的计算时,精心设疑:圆柱的侧面是个曲面,怎样计算它的面积呢?想一想,能否将这个曲面转化为我们学过的平面图形,从中思考和发现它的侧面积该怎样计算呢?在我的启发下,学生以小组为单位,用圆柱形纸筒进行实际操作,最终发现圆柱的侧面展开图有多种形式,而不是单纯的照本宣科,沿高线展开;另外实践中使所有图形进而转化为长方形。实现教材的回归,最后探究出侧面积的计算方法。
2、 教师讲解与学生练习相结合
教学过程中,我改变了传统的先讲后练的教学模式,做到讲练结合惯穿始终。而且使练习随着讲解由易到难,层层深入,一环紧扣一环。具体做法是:在学生理解圆柱的侧面积的公式后,安排学生强化训练:紧接着又复习圆面积公式,训练计算圆柱的底面积,利用计算所得的数据,合理自然地计算出圆柱的表面积。在练习表面积的实际应用时,又很自然地进行了实际生活问题的引导教学。使学生学得轻松,练得有趣。
三、较好地培养了学生的创新意识
1、 培养了学生的合作创新意识。
在教学圆柱侧面积计算方法时,我没有拘泥于教材上把侧面积转化为长方形这一思路,而是放手学生合作探究,鼓励学生猜想和实验,最终学生通过动手、观察和思考,探讨出了侧面积计算方法。在组织学生合作学习中,较好地培养了学生的创新意识。
2、 培养了学生的实践能力。
本节课我大胆给予学生自主探索的时间与空间,让学生动手测量、动手实践,使学生处于学习主体的地位,充分发挥每一个学生的潜能,让学生在合作学习中不仅达到学以致用的目的,而且培养了实践能力。
四、较好地利用现代化的教学手段。
本节课合理地利用了多媒体教学技术。在讲练过程中,动态课件演示,并闪烁所求底面和侧面。将直接的告诉条件和问题变成动态的先后展示,不仅做到思路清、方向明,而且极大地调动了学生学习的积极性。另外,多媒体将生活中的罐头盒、笔桶、圆柱立柱等实物“搬”到课堂,加深了学生对表面积实际计算意义的直观认识和理解,使学生感受到了数学与现实生活的密切联系
五、课后拓展、知识设计联系实际。
安排有:只有侧面的圆柱形;只有一个底面的圆柱形;两个底面都有的圆柱形。设计题目的计量单位有所不同。课后习题层次加深,始终以培养学生审题习惯及应用能力的提高为主线。
当然,在这节课的教学中,还存在着一些不足:
一、我整节课的板书安排不够合理,书写有些潦草!
二、实践操作时间安排有些急。在动手探索圆柱侧面积的计算方法时,大部分学生操作慢,展示推导的过程有些短促,导致个别学困生只能听听而已。
三、学生对圆周长和面积的计算不够熟练,所以,在计算圆柱的侧面积和表面积时显得费时费力;小组合作的初衷也是好的,但在实际教学中却没有达到预期的要求。在以后的教学中,我还应该多吸取教训,弥补自己的不足,用更好的教学方法进行数学知识的教学。
《圆柱的表面积》教学反思
——关于圆柱侧面展开图
圆柱的表面积教学,关键在于通过圆柱的侧面展开图推导出圆柱的侧面积公式。教材中只介绍了把圆柱沿着高将侧面展开,得到一个长方形。通过长方形的面积推导出圆柱的侧面积,这是一种普遍的现象,学生容易理解和接受。
1、圆柱的侧面展开图除了长方形,还可能是什么图形?发现、创新是每个孩子的天性,在基本知识理解掌握之后,他们对于书本上没有的方式方法有更高的兴奋点与关注点。学生自己准备的圆柱,沿高展开后还可能得到正方形,这是一种特殊现象。学生自己得出了与书上不一样的结果,觉得很兴奋。趁着学生发现探索的积极性,让学生思考还可以将圆柱的侧面怎样展开。有的说横着从中间剪一刀,立刻有人反对说那还是两个圆柱。横剪不行,竖剪过了,还能怎么剪?同学们犯起了愁。在一阵思考之后有人冒出一句:“斜剪!”“展开之后是什么图形?”有人猜是三角形,有人说是梯形,有人说平行四边形,带着种种可能同学们又开始给圆柱穿上一层衣服,然后沿着斜线剪开,结论不用说,平行四边形展现在同学们面前。继续用平行四边形推导侧面积公式,平行四边形的底是圆柱的底面周长,高呢?是不是平行四边形的斜边?经过一番争论之后,得出高需要重新做垂线。
2、展开之后的图形可以怎样还原成圆柱?数学课要培养学生的思维能力,如果会展开那只是顺向思维,展开后会还原才能培养他们的逆向思维。
“长方形和正方形都有两种还原方法,那平行四边形是否也有两种还原方法?”问题抛出又产生了分歧,很多同学只会按剪开之后的形状还原,再换个方向竖起来就不行了,总是上下各有两个尖角,其实这是学生拿平行四边形的方式有问题,让他们把平行四边形的斜边贴到桌子上再还原,这样就有很多人展开了笑脸。“找窍门,怎样不贴到桌子上也能正确还原?”细心的同学发现只要捏住相邻的两个角就能轻松还原了,一句话——角对角。得到结论:只要是平行四边形一定可以围成圆柱。
通过圆柱侧面展开图的深入研究,同学们打开了探索、创新的思维,知道了学习不能只停留在书面的内容,应深入探讨,多方面多角度思考,要知其然,更要知其所以然。
《圆柱的表面积》教学反思
黄沙小学 黄永娟
这学期上了一堂关于“圆柱的表面积”的课,给我留下了深刻的印象,无论是自己的教,还是学生的学,都是本学期开学以来,感觉最好的一节课。因为在本节课中,学生的学习积极性,自觉性,都比以往要强的多;尤其是学生发言非常积极,连平时从不回答问题的差生也毫不犹豫的举起了手要求回答问题。当看见差生那种非常自信,非常迫切想表达自己的意见时,我当时真的感到好激动,眼前的学生个个都变的可爱极了!一节课下来,我感到所有的学生对本节课的知识都掌握不错,
仔细回忆本节课的教学,比起以往的教学,我认为本节课之所以感到很成功,是因为本节课具有以下的特点:
1、直观演示和实际操作相结合。
新课开始,我通过圆柱教具直观演示,引导学生复习圆柱的特征,进而理解圆柱表面积的意义。在教学侧面积的计算时,精心设疑:圆柱的侧面是个曲面,怎样计算它的面积呢?想一想,能否将这个曲面转化为我们学过的平面图形,从中思考和和发现它的侧面积该怎样计算呢?在老师的启发下,学生以小组为单位,用圆柱形纸筒进行实际操作,最后探究出侧面积的计算方法。
2、讲解与练习相结合。
教学这节课,我改变了传统的先讲后练的教学模式,做到讲练结合贯穿教学的始终。而且使练习随着讲解由易到难,层层深入,一环紧扣一环。例如:在学生学会计算圆柱的底面积和侧面积以后,设疑:你会计算这圆住的表面积吗?学生在充分练习铺垫的基础上,利用计算所得数据,合理自然地就计算出了圆柱的表面积。在练习表面积的实际应用时,又很自然地进行了“进一法”的教学。使讲练真正做到了有机结合,学生学得轻松,练得有趣。
3、培养了学生的合作创新意识。
在教学圆柱侧面积计算方法时,我没有拘泥于教材上把侧面积转化为长方形这一思路,而是放手让学生合作探究;能否将这个曲面转化为学过的平面图形?鼓励学生大胆猜想和实验,把圆柱形纸筒剪开。结果学生根据纸筒的特点和剪法分别将曲面转化成了长方形、正方形、平行四边形等平面图形。通过观察和思考,最终都探讨出了侧面积的计算方法。在组织学生合作学习中,较好地培养了学生的创新意识。
在教学时自己的不足的是,部分差生计算起来比较慢,甚至结果不够准确。时间没有把握好,探索圆柱侧面展开时耗时过多,影响后面教学环节的达成。
《圆柱的表面积》教学反思
教学圆柱的表面积很难受,因为这部分知识计算难度大,学生计算时错误百出,这学期再一次教学圆柱的表面积,为了改变这种状况,我深入钻研教材,并对以往的教学经验进行了整理,注重了知识的系统化教学,取得了较好的教学效果。
在学生对圆柱的表面积有了初步的认识,知道了圆柱的表面积等于两个底面积加一个侧面积之后,让学生进行表面积的计算,学生经过尝试练习,感到这种计算太麻烦了,计算容易出错。这时我引导学生对圆柱的表面积进行拼摆,(运用五年级的知识,圆柱的2个底面可以运用化曲为直的方法拼摆成长方形),这样发现圆柱的表面积经过拼摆可以得到一个大长方形,大长方形的长等于圆柱的底面周长,大长方形的宽等于圆柱的高加底面半径,因此圆柱的表面积等于圆柱的底面周长乘高加半径的和,接着又从公式上进行推导,同样得到了这个公式,s表=2∏r(h+r),接着进行相关的对比练习,学生普遍感到这种方法计算简便了很多,不容易出错。当天作业的正确率有了很大的提高。在学生接受了这种方法后,我又让学生拼摆一个底面积和一个侧面积的图形,得到了这样的图形的表面积等于圆柱的底面周长乘高加底面半径的一半,公式是s表=2∏r(h+1/2r),经过练习学生也马上掌握了,为了使这几种情况区分的更清楚,我又对圆柱的表面积的情况进行了对比,圆柱的侧面积等于底面周长乘高;一个底面积和一个侧面积等于圆柱的底面周长乘高加底面半径的一半;一个底面积和两个侧面积圆柱的表面积等于圆柱的底面周长乘高加半径的和。接着出示不同的练习,让学生选择不同的公式,学生很快就熟悉了,计算速度有了很大的提高,圆柱的表面积这部分知识就这样轻松过去了,学生的作业本上清楚了很多,课堂上轻松了很多。
《圆柱的表面积》教学反思
我今天教学的内容是《圆柱的表面积》,圆柱的表面积教学,重点在于通过圆柱的侧面展开图推导出圆柱的侧面积计算公式,难点是灵活运用侧面积、表面积的有关知识解决实际问题。在本节课的教学中,我从始至终贯穿着“以学生为主体,教师为主导,训练思维为主线”的原则,让学生在玩中学,学中玩,以游戏闯关的形式愉悦地完成本课教学。课下,听取了老师们的评课,又联系课堂教学,我进行了深刻地反思。这节课的优点主要有以下几方面:
一、激情导课,激发学生的求知欲。
复习开始前,我问“同学们,老师今天把你们刚认识的新朋友带来了,你们猜,他是谁?”就在学生们的猜测下,我拿出了课前藏好的圆柱。我继续发问“你们认识它吗,是怎样认识的?你们还想知道它的什么?”由此展开圆柱的表面展开图。复习引入——提出长方体、正方体的表面积,导出圆柱的表面积的意义。
二、探究新知,闯关激发学习兴趣。
本课教学,以闯关的形式将课程分为三部分,以闯关成功奖励一节活动课为诱饵,激发学习兴趣。第一关是侧面积的计算,探究新知时,让学生通过讨论、交流,明确圆柱侧面沿高打开是长方形,长方形的长相当于圆柱的底面周长,宽相当于圆柱的高。由此导出圆柱的侧面积的计算方法。在学生学会计算圆柱的侧面积以后,设疑:你会计算这圆柱的表面积吗?(第二关开始)学生在充分练习铺垫的基础上,合理自然地就计算出了圆柱的表面积。在练习表面积的实际应用时,又很自然地进行了“进一法”的教学。第三关是练习阶段,以生活中的圆柱物体为例求出所需要的材料,要求学生说出要计算哪几个面,体现了数学来源于生活,数学应用于生活。
三、把握重、难点,合理利用教材。
“圆柱表面积”这节课教学内容主要包括:圆柱的侧面积、表面积的计算,以及用“进一法”取近似值。教材安排了三道例题,但在教学中,我将侧面积计算方法的推导作为教学难点来突破,将表面积的计算作为重点来教学,将用“进一法”取似值作为一个知识点。在突破侧面积的计算方法这个难点时,精心设疑:圆柱的侧面是个曲面,怎样计算它的面积呢?让学生以小组为单位,用圆柱形纸筒进行实际操作,最后探究出侧面积的计算方法。在学生学会计算圆柱的底面积和侧面积以后,设疑:你会计算这圆柱的表面积吗?学生在充分练习铺垫的基础上,合理自然地就计算出了圆柱的表面积。在练习表面积的实际应用时又体现了数学与生活的联系。
四、教学方法,直观演示和实践操作相结合。
在侧面积和表面积的计算环节中,我首先让学生摸一摸,自己观察、发现,形成圆柱表面积的表象。认识到圆柱的表面积等于圆柱的侧面积和两个底面面积之和。教学侧面积的计算方法时,让学生以小组为单位,通过观察、操作推导出侧面积的计算方法。俗话说:听过了就忘记了,做过了就记住了。学生亲身实践了,一定记忆深刻。这样充分利用了学生现有的学具和准备的圆柱体实物,让学生自己去动手、观察,推导出了圆柱的表面积和侧面积的计算公式,并运用幻灯片辅助教学,有利于学生对知识的理解及掌握。
当然,在这节课的教学中,还存在着一些不足:
一、实践操作展示得不够。在动手探索圆柱侧面积的计算方法时,大部分学生联系上节课的经验说出看法,而没有实际操作,我也没有让他们展示推导的过程,加深印象,只是让他们说一说,导致一部分学困生只能听听而已。
二、学生对圆周长和面积的计算不够熟练,所以,在计算圆柱的侧面积和表面积时显得费时费力;小组合作的初衷也是好的,但在实际教学中却没有达到预期的要求。在以后的教学中,我还应该多吸取教训,弥补自己的不足,用更好的教学方法进行数学知识的教学。
《圆柱的表面积》教学反思
本课用课前预习课上小组内交流汇报的教学方式组织教学,课前布置了《圆柱的表面积》预习提纲 :1、什么是圆柱的表面积?2、沿着圆柱的高剪开圆柱的侧面,侧面展开图是什么形状?3、怎样求圆柱的侧面积? 4、怎样求圆柱的底面面积?5、怎样求圆柱的表面积?
课上学生很快讨论出圆柱体表面积的计算方法。由于学生在之前的学习中已经接触了“化曲为直”的数学方法,所以把圆柱体的侧面展开成长方形(或正方形)学生已经能想象和深刻理解,并且通过想象和推理能够明确展开的长方形的长(宽)就是圆柱体底面的周长,展开的长方形的宽(长)就是圆柱体的高,因此,学生对于怎样求圆柱体的表面积能够理解和初步掌握。
但是,通过学生尝试计算圆柱体表面积的过程中,仍然存在许多问题,第一:学生对于圆柱体的表面积的计算方法虽然初步掌握但是很不熟练,具体表现在求圆的面积和圆的周长时,特别容易出现混淆,原因就是对求圆的面积和圆的周长的计算办法掌握欠熟练,特别是求圆的面积时,部分学生总是忘记把半径进行平方,或者是直接用给出的直径去平方,这都是对圆的面积计算办法掌握不熟练的表现;第二:学生的计算能力和计算正确率都有待提高,由于在计算过程中出现了圆周率,又有半径的平方的计算,所以很多学生的计算正确率很低。原因就是学生的口算能力、笔算能力都没有形成技能,只掌握计算方法但不能熟练准确的计算,这都是学生能够准确求出圆柱体表面积的障碍。
针对这种情况,我打算采取这样的办法:第一:强化学生对圆的面积和圆的周长、圆柱侧面积的计算办法。方法是这样的,每节课前我都会先给学生1分钟强化默默记忆的时间,接着采用游戏抢答的形式我提问学生抢答,学生兴趣浓,记忆效果较好,这样重复强化学生的记忆,在计算圆柱表面积的时候能够提高计算的正确率。第二:在计算时提醒学生仔细认真,出错时要找出出错的原因,对证改错。同时结合课前三分钟计算的时间,加强学生的计算练习。第三:熟记常用数据。比如熟记了15到95的平方,同时也就能熟记1.5到9.5的平方了,这样,如果给出的直径是一些单数,半径是1.5到9.5的数据,半径的平方也就能够比较快而准确地记住了,一定程度上也可以提高计算的正确率。
总之,让学生熟练准确的计算圆柱的表面积和侧面积,可以为下一步学习和计算圆柱的体积扫清障碍。