圆的周长
第1课时
【教学内容】
教科书第24-25页例1、例2,课堂活动第1、2题,练习五第1~5题。
【教学目标】
1.掌握圆周率的近似值,理解和掌握圆周长公式,并能正确计算圆的周长和解答简单的实际问题。
2.让学生在知识的主动建构过程中掌握一些数学的思想方法,发挥学生学习的主动性、独立性、合作性,对学生进行辨证唯物主义教育和爱国主义教育。
【教学重、难点】
掌握并理解圆的周长计算公式及其推导过程。
【教具、学具准备】
圆规、直尺、课件、圆纸片、线。
【教学过程】
一、导入新课
出示情境图:谁的铁环滚一圈的距离长一些?为什么?
教师:铁环滚动一周的距离我们就叫做铁环的周长。
教师:围成圆的曲线的长叫做圆的周长。今天我们就一起来研究圆的周长。
板书课题:圆的周长。
二、感知圆的周长与直径的关系
1.老师出示一个圆(实物)。谁来指一指这个圆的周长?课件出示一个圆。谁来指一指这个圆的周长?
学生指出并回答。(略)
2.观察。
课件演示右图:
问题:这两个圆周长有什么关系?你是怎么知道的?
小结:直径相等,圆的周长就相等。
3.课件演示右图:
问题:这两个圆的周长哪一个长一些?为什么?学生回答后,课件演示由曲变直,对学生的推断进行检验。
4.小结。
问题:通过刚才的观察,你有什么发现?
学生:圆的周长和直径有关系。
三、探究圆的周长与直径的倍数关系
圆的周长和直径有怎样的关系呢?我们一起来作一个实验,测量学具中圆形的周长和直径,然后再用周长除以直径得出它们的商。
1.小组讨论,制定探究步骤。
出示探究建议:
(1)测量圆的周长和直径;(2)记录数据;(3)进行计算;(4)得出结论。
2.说明活动要求。
每个组的同学先测量出学具中圆形的周长和直径,然后再用周长除以直径,并把这些数据和计算的结果填在表里。
圆的直径圆的周长周长除以直径的商(保留两位小数)
3.小组合作,进行探究。
4.汇报交流。
(1)交流测量的方法。
提问:谁来介绍一下,你们组是怎样测量圆的周长的?
学生汇报测量的方法。(绳绕法、滚动法……)
教师:在这些方法中,最欣赏哪个组的方法?
小结:不同的材料,可以用不同的方法进行测量。无论是哪一种方法,都是在想办法把圆这个曲线图形转化成直线来进行测量的。(课件出示绳绕法、滚动法……的动画测量过程)
(2)交流计算方法和结论。
提问:观察这些计算结果,你有什么发现?你还有哪些了解?
学生汇报:圆的周长是它的直径的3倍多一些。这个3倍多一些的数叫圆周率,用字母π表示。
5.介绍圆周率。
圆周长和直径的比值叫做圆周率,对于圆周率我国古代的数学家就对此有了研究了,他们把圆内接正六边形的周长近似的看作圆的周长,因为正六边形的周长是直径的3倍,所以近似的看成圆的周长是直径的3倍,(出示课件,展示圆内接正六边形周长是圆直径的3倍)可是大家可以发现圆内接正六边形的周长与圆的周长的误差太大了。因此把它的边数加倍,得到正十二边形,再加倍到正二十四边形。我国古代伟大的数学家刘徽用圆的内接正96边形,算出圆的周长是直径的3.14倍,而祖冲之用圆的内接正16384边形,算出圆的周长与直径的倍数精确到小数点后第七位:3.1415926与3.1415927之间,是世界上把圆周率精确到小数点后第七位的第一人,他在数学上的伟大贡献得到了世界的公认。同学们,你们发现了什么呢?(分得的边数越多,精确的数位越多)到了现代,人们用计算机对圆周率进行计算,1999年日本的两位科学家把π值精确到2061亿位。
6.总结圆周长的计算方法。
问题:你怎样理解周长/直径=π?你还能知道什么?
结论:c=πd,d=c/π,c =2πr,r=c/2π。
说明:为了计算方便,我们把π近似的取为3.14。
7.教学例2。
让学生独立列式计算,提示用估算检查计算结果。
[评析:有前面数学活动的基础,总结出圆周长的计算公式已经是水到渠成,整个过程充分发挥学生的主体作用。让学生学习例2这既是验证刚发现的圆周长计算公式,又是初步运用,巩固刚发现的公式,更是让学生经历科学发现的完整过程。]
四、巩固练习
(一)判断。
1.π=3.14。()
2.计算圆的周长必须知道圆的直径。()
3.只要知道圆的半径或直径,就可以求圆的周长。()
(二)选择。
1.较大的圆的圆周率()较小的圆的圆周率。
a.大于b.小于c.等于
2.半圆的周长()圆周长。
a.大于b.小于c.等于
(三)实践操作。
请同学们以小组为单位,画一个周长是12.56厘米的圆。先讨论如何画,再操作。
五、课堂小结
通过这堂课的学习,你有什么收获?你还有什么问题?
六、课堂作业
1.课堂活动第1、2题。
将课堂活动第1题的直径扩展到9cm为止,当学生算完后,除了观察直径、周长的变化外,还要能让学生将直径与周长对应的值记一记。第2题的图形周长在于引导学生去探索这个图形的周长指哪些线,怎么算,最后概括出半圆周长的计算公式。
2.练习五第1~5题。
在学生理解半径、直径、周长之间相互关系的基础上,运用公式进行计算。教学时,要求学生认真审题,分清每题的条件和问题,合理地运用公式,同时注意每题的单位名称。其中,练习五第3题,可以用教具进行演示,说明计算分针尖端走过的路程,就是求半径是15厘米的圆的周长。
七、课后作业
1.求下面各圆的周长。
(1)d=2米(2)d=1.5厘米(3)d=4分米
2.求下面各圆的周长。
(1)r=6分米(2)r=1.5厘米(3)r=3米
[评析:创设生活情境,密切与生活之间的关系。再通过观察发现圆周长与直径有关,究竟是什么关系呢。接着就引导学生做实验,探索出圆周长是直径的3倍多。让学生经历猜想、实验、验证、概括的数学学习过程,不仅对于掌握数学知识有用,而且有利于培养学生探索科学知识的意识和能力。]