2014年新人教版七年级数学下册10.2直方图教案


2014年新人教版七年级数学下册10.2直方图教案
10.2直方图(一)
教学目标1、理解频数、频数分布的意义,学会制作频数分布表;2、学会画频数分布直方图和频数折线图。
教学重点:学会画频数分布直方图
教学难点:确定组距和组数
教学过程
一、导入新课
收集数据、整理数据、描述数据是统计的一般过程。我们学习了条形图、折线图、扇形图等描述数据的方法,
今天我们学习另一种描述数据的统计图——直方图。
二、频数分布直方图
问题4为了参加全校各年级之间的广播体操比赛,七年级准备从63名同学中挑出身高相差不多的40名同学参加比
赛。为此收集到这63名同学的身高(单位:㎝)如下:
158        158        160        168        159        159        151        158        159
168        158        154        158        154        169        158        158        158
159        167        170        153        160        160        159        159        160
149        163        163        162        172        161        153        156        162
162        163        157        162        162        161        157        157        164
155        156        165        166        156        154        166        164        165
156        157        153        165        159        157        155        164        156
选择身高在哪个范围的学生参加呢?
为了使选取的参赛选手身高比较整齐,需要知道数据(身高)的分布情况,即在哪些身高范围内的学生比较多

为此我们把这些数据适当分组来进行整理。
计算最大值与最小值的差(极差)
最小值是149,最大值是172,它们的差是23。说明身高的变化范围是23㎝.
2、决定组距与组数
把所有的数据分成若干组,每个小组的两个端点之间的距离(组内数据的取值范围)称为组距。
作等距分组(各组的组距相同),取组距为3㎝(从最小值起每隔3㎝作为一组)。
将数据分成8组:149≤x<152,152≤x<155,…,170≤x<173.
注意:①根据问题的需要各组的组距可以相同或不同;
②组距和组数的确定没有固定的标准,要凭借经验和所研究的具体问题来决定;
③当数据在100个以内时,按照数据的多少,常分成5~12组,一般数据越多分的组数也越多。
3、频数分布表
对落在各个小组内的数据进行累计,得到各个小组内的数据的个数(叫做频数)。用表格整理可得频数分布表

频数分布表
身高分组        划记        频数
149≤x<152       
2
152≤x<155        正一        6
155≤x<158        正正
12
158≤x<161        正正正
19
161≤x<164        正正        10
164≤x<167        正
8
167≤x<170       
4
170≤x<173       
2
从表格中你能看出应从哪个范围内选队员吗?
可以看出,身高在155≤x<158,158≤x<161,161≤x<164三个组的人数最多,一共有12+19+10=41人,因
此,可以从身高在155~164㎝(不含164㎝)的学生中选队员。
4、画频数分布直方图
为了更直观形象地看出频数分布的情况,可以根据上表画出频数分布直方图。
上面小长方形的面积表示什么意义?
小长方形的面积=组距× =频数.
可见,频数分布直方图是以小长方形的面积来反映数据落在各个小组内的频数的多少。
等距分组时,各小长方形的面积(频数)与高的比是常数(组距)。因此,画等距分组的频数分布直方图时,
为画图与看图方便,通常直接用小长方形的高表示频数。
这样,上面的频数分布图可画成下面的形式:
三、频数分布折线图
在频数分布直方图的基础上,我们还可以用频数折线图来描述频数的分布情况。
首先取直方图的每一个长方形上边的中点,然后在横轴上直方图的左右取两个频数为0的点,它们分别与直方图
左右相距半个组距。
例如,在上面的直方图的左边取点(147.5,0),在直方图右边取点(174.5,0),将所取的这些点用线段依
次连接起来,就得到频数分布折线图。
四、课堂小结
频数分布直方图是描述数据的又一方式,画频数分布直方图的关键是确定组距和组数,而这一点没有固定的标
准,要凭借经验和所研究的具体问题来决定。频数分布折线图也是描述频数分布情况的一种方式。
作业:课本P150第1题第3题。
10.2直方图(二)
教学目标:
掌握频数分布直方图和频数折线图的画法,并能用频数分布直方图解释数据中蕴含的信息,进一步体会统计图
表在描述数据中的作用。
教学重点:画频数分布直方图
教学难点:解释数据中蕴含的信息
教学过程
一、复习导入
上节课我们学习了画频数分布图,回忆一下,画频数分布直方图有哪些步骤?怎样确定组距和组数?
二、例题
看下面的例子:
为了考察某种大麦穗长的分布情况,在一块试验田时抽取了100个麦穗,量得它们的长度如下表(单位:㎝):
6.5        6.4        6.7        5.8        5.9        5.9        5.2        4.0        5.4        4.6
5.8        5.5        6.0        6.5        5.1        6.5        5.3        5.9        5.5        5.8
6.2        5.4        5.0        5.0        6.8        6.0        5.0        5.7        6.0        5.5
6.8        6.0        6.3        5.5        5.0        6.3        5.2        6.0        7.0        6.4
6.4        5.8        5.9        5.7        6.8        6.6        6.0        6.4        5.7        7.4
6.0        5.4        6.5        6.0        6.8        5.8        6.3        6.0        6.3        5.6
5.3        6.4        5.7        6.7        6.2        5.6        6.0        6.7        6.7        6.0
5.5        6.2        6.1        5.3        6.2        6.8        6.6        4.7        5.7        5.7
5.8        5.3        7.0        6.0        6.0        5.9        5.4        6.0        5.2        6.0
6.3        5.7        6.8        6.1        4.5        5.6        6.3        6.0        5.8        6.3
列出样本的频数分布表,画出频数分布直方图。
解:1、计算最大值与最小值的差是多少?
最大值-最小值的差:7.4-4.0=3.4(㎝)
2、决定组距和组数:组距取多少时组数合适?
取组距0.3㎝,那么 可分成12组,组数合适。
3、列频数分布表
分组        划记        频数
4.0≤x<4.3        一        1
4.3≤x<4.6        一        1
4.6≤x<4.9       
2
4.9≤x<5.2        正        5
5.2≤x<5.5        正正一        11
5.≤x<5.8        正正正        15
5.8≤x<6.1        正正正正正
28
6.1≤x<6.4        正正
13
6.4≤x<6.7        正正一        11
6.7≤x<7.0        正正        10
7.0≤x<7.3       
2
7.3≤x<7.6        一        1
合计                100
4、画频数分布直方图

仔细观察上面的表和图,这组数据的分布规律是怎样的?
麦穗长度大部分落在5.2㎝至7.0㎝之间,其他区域较少。长度在5.8≤x<6.1范围内的麦穗个数最多,有28个,
长度在4.0≤x<4.3,4.3≤x<4.6,4.6≤x<4.9,7.0≤x<7.3,7.3≤x<7.6范围内的麦穗个数很少,总共只
有7个。
三、课堂练习
P149练习(1)你认为组距是多少比较合适?为什么? 5组,因为100个数据以内可以分5~12组,这里有48个数
据,分5组或6组比较合适。(2)画出直方图。
作业:P150第2、4题。
本章小结一、知识结构
二、回顾与思考
1、统计调查的一般过程是什么?统计调查对我们有什么帮助?
统计调查一般包括收集数据、整理数据、描述数据和分析数据等过程;可以帮助我们更好地了解周围世界,对
未知的事物作出合理的推断和预测。
2、全面调查和抽样调查是收集数据的两种方式。什么是全面调查?什么是抽样调查?它们各有什么优缺点?
考察全体对象的调查叫做全面调查。
只抽取一部分对象进行调查,然后根据调查数据推断全体对象的情况,这种方法是抽样调查。
全面调查收集到的数据全面、准确,但一般花费多、耗时长,而且某些具有破坏性的调查不宜用全面调查;抽
样调查花费少、时间短,节省人力、物力、财力,破坏性小;结果往往不如全面调查准确,且样本选取不当,
会增大估计总体的误差。
3、实际调查中常常采用抽样调查的方法获取数据。抽样调查的要求是什么?
(1)每个个体被抽到的机会相同;(2)样本容量要适当。
4、利用统计图表描述数据是统计分析的重要环节。对于收集到的数据加以整理,并用统计图表描述出来,这有
什么作用?
帮助我们从数据中获得信息,得出结论。
5、如何画扇形图、频数分布直方图和频数分布折线图?各种统计图都有什么特点?
根据各部分所占的百分比计算出各部分所对应的圆心角,从而把一个圆分成几部分,标上百分比,写出名称,
就得到了扇形统计图。
绘制频数分布直方图:        ①计算最大值与最小值的差;        ②决定组距和组数;
③列频数分布表                                ④画频数分布直方图。
首先取直方图中每一个长方形上边的中点,然后在横轴上直方图的左右取两个频数为0的点,它们分别与直方图
左右相距半个组距,将所取的这些点用线段依次连接起来,就得到频数折线图。
条形图能够显示每组中的具体数据;扇形图能够显示部分在总体中所占的百分比;折线图能够显示数据的变化
趋势;频数分布直方图能够显示数据的分布情况。
三、例题导引
例1测得某市2月份1~10日最低气温随日期变化折线图如图所示。(1)最高气温为2℃的天数为天;(2)该市
这10天气温变化趋势图;(3)写一条有关的结论:.
  
例1图                                                                例2图
例2某校学生在“暑假社会实践”活动中组织学生进行社会调查,并组织评委对学生写的调查报告进行统计,绘
制了统计图,请根据该图回答下列问题:(1)学生会抽取了多少份调查报告?(2)若等第A为优秀,则优秀率
为多少?(3)学生会共收到调查报告1000份,请估计该校有多少份调查报告的等第为E?
例3初中学生的视力状况已受到全社会的广泛关注。某市有关部门对全市20万名初中学生视力状况进行了一次抽
样调查,从中随机抽查了10所中学全体学生的视力情况,图(1)、图(2)是2004年抽样情况统计图。请你根
据两图解答以下问题:(1)2004年这10所中学学生的总人数是多少?(2)2004年这10所中学学生的视力在
4.35以上的人数占全市中学生总人数的百分比是多少?(3)2004年该市参加中考的学生达66000人,请你估计
2004年该市这10所中学参加中考的学生共有多少人?

图(1)                                                        图(2)
四、练习提高:课本P158第1-10题。

 
热门七年级相关范文