2014年新人教版七年级数学下册8.4三元一次方程组解法举例教案


2014年新人教版七年级数学下册8.4三元一次方程组解法举例教案
新人教版七年级数学下册教案
8.4 三元一次方程组解法举例
教学目标:1.了解三元一次方程组的概念.2.会解某个方程只有两元的简单的三元一次方程组.
3.掌握解三元一次方程组过程中化三元为二元的思路.
教学重点:        (1)使学生会解简单的三元一次方程组.(2)通过本节学习,进一步体会“消元”的基本思想.
教学难点:针对方程组的特点,灵活使用代入法、加减法等重要方法.
教学过程:
一、创设情景,导入新课
    前面我们学习了二元一次方程组的解法,有些实际问题可以设出两个未知数,列出二元一次方程组来求解。实际上,有不少问题中会含有更多的未知数,对于这样的问题,我们将如何来解决呢?
【引例】小明手头有12张面额分别为1元,2元,5元的纸币,共计22元,其中1元纸币的数量是2元纸币数量的4倍,求1元,2元,5元纸币各多少张.
提出问题:1.题目中有几个条件?2.问题中有几个未知量?3.根据等量关系你能列出方程组吗?
【列表分析】   (师生共同完成)
(三个量关系)         每张面值    ×    张数     =    钱数
        1元        x        x
        2元        y        2y
        5元        z        5z
合   计                12        22
注        1元纸币的数量是2元纸币数量的4倍,即x=4y
解:(学生叙述个人想法,教师板书)
设1元,2元,5元的张数为x张,y张,z张.
    根据题意列方程组为:
【得出定义】   (师生共同总结概括)
这个方程组有三个相同的未知数,每个方程中含未知数的项的次数都是1,并且一共有三个方程,像这样的方程组叫做三元一次方程组.
二、探究三元一次方程组的解法
【解法探究】怎样解这个方程组呢?能不能类比二元一次方程组的解法,设法消去一个或两个未知数,把它化成二元一次方程组或一元一次方程呢?(展开思路,畅所欲言)
例1 .解方程组
分析1:发现三个方程中x的系数都是1,因此确定用减法“消x”.
分析2:方程③是关于x的表达式,确定“消x”的目标.
【方法归纳】根据方程组的特点,由学生归纳出此类方程组为:
类型一:有表达式,用代入法.
针对上面的例题进而分析,例1中方程③中缺z,因此利用①、②消z,可达到消元构成二元一次方程组的目的.
根据方程组的特点,由学生归纳出此类方程组
类型二:缺某元,消某元.
教师提示:当然我们还可以通过消掉未知项y来达到将“三元”转化为“二元”目的,同学可以课下自行尝试一下.
三、课堂小结
1.解三元一次方程组的基本思路:通过“代入”或“加减”进行消元,把“三元”化为“二元”,使解三元一次方程组转化为解二元一次方程组,进而转化为解一元一次方程.
    即三元一次方程组   二元一次方程组  一元一次方程
    2.解题要有策略,今天我们学到的策略是:有表达式,用代入法;缺某元,消某元.
四、布置作业
解方程组  你能有多少种方法求解它?
本题方法灵活多样,有利于学生广开思路进行解法探究。
教材106页练习1(1),2;习题8.4—1.
本章小结
一、知识结构
二、回顾与思考
1、什么是二元一次方程?什么是二元一次方程组?什么是二元一次方程的解?什么是二元一次方程组的解?
2、什么是消元的思想?解二元一次方程组消元的途径有哪些?
3、列二元一次方程组解应用题与列一元一次方程解应用题有什么相同之处?有什么不同之处?
三、例题导引
例1 已知方程组 甲由于看错了方程(1)中的a,得到方程组的解为 ,乙由于看错了方程(2)中的b,得到方程组的解为 ,若按正确的计算,求x+6y的值。
例2  甲、乙两件服装的成本共500元,商店老板为获取利润,决定将甲服装按50﹪的利润定价,乙服装按40﹪的利润定价。在实际出售时,应顾客要求,两件服装均按9折出售,这样商店共获利157元,求甲、乙两件服装的成本各是多少元?
例3  据研究,一般洗衣粉含量以0.2%~0.5%为宜,即100千克洗衣水里含200~500克的洗衣粉比较合适,因为这时表面活性最大,去污效果最好。现在,洗衣缸里放了两汤匙洗衣粉(一汤匙约0.02千克),4千克衣服,若要使洗衣粉的含量为0.4%(放入衣服之后),容量达到15千克,还需加多少洗衣粉,添多少水才合适?
三、练习升华
课本111-112面

 
热门七年级相关范文