圆的认识教案


教学目标
1.使学生认识圆及各部分的名称,会用圆规画圆,理解并掌握圆心、半径与圆的位置和圆的大小的关系,掌握半径与直径的特征及关系。
2.培养学生的动手操作能力和观察、分析、综合、概括的能力及其空间观念的建立。
3.渗透辩证唯物主义的启蒙教育。
教学重点和难点
教学重点:认识圆,掌握圆的特征,了解画圆的步骤和掌握画圆的方法。
教学难点:了解画圆的步骤和掌握画圆的方法。
教学过程设计
()复习导入
1.请你说出下面各图形的名称。
这些都是我们学过的平面图形,它们都是由什么围成的?(都是由线段围成的。)
2.在日常生活中常见的一些物体(出示投影片),如硬币的面、有些钟表的面及有些桌子的面都是什么形的?(圆形)(用抽拉复合投题片抽去实物图形,剩下圆形。)
3.(电脑屏幕演示)一根绳子,一端固定,另一端拴一个小球,甩一周,小球留下的轨迹就是一个什么图形?(圆形)谁来指指屏幕上哪儿是圆形?
教师介绍圆上、圆内、圆外。
4.圆和学过的图形有什么相同点和不同点?(相同点:都是平面图形;不同点:圆是曲线围成的图形。)谁能说一说你周围的物体上哪里有圆?
今天,我们就来学习有关圆的知识。(板书课题:圆的认识。)
()学习新课
1.借助工具画圆,进一步认识圆是由一条封闭曲线围成的。
(1)用你准备的圆形物体画一个圆。
(2)说说你是怎样画的?(沿着它的周边画一圈。)请你用剪子把这个圆剪下来
2.认识圆各部分的名称及其特征。
(1)认识圆心。
①把你剪的圆对折,打开,再换个方向对折,再打开,反复折几次。折过若干次后,可以发现什么?小组讨论讨论。
②这些折痕相交于圆中心的一点,我们把圆中心的这一点叫做圆心。圆心一般用字母“O”表示。画圆时固定的一点,就叫做圆心。
(2)认识半径及半径的特征。
①请学生在圆上找一点。学生动手:以圆心和圆上找的一点为端点画一条线段。
师介绍:从圆心到圆上任意一点的线段叫半径,用r表示。这是一条什么样的线段?半径必须具备哪些特征?(半径是一条线段,两个端点分别在圆心和圆上任意一点。)
②请学生在规定的时间内画半径,看谁画得多。还能画吗?这说明了什么?(半径有无数条。)
③用尺子量一量这些半径,你发现了什么?(同圆或等圆半径相等。)
(3)认识直径及其特征。
①我们把圆对折时,每条折痕之间有什么共同的特点?小组讨论讨论。(折痕通过圆心,两端都在圆上。)
②我们就把这样的通过圆心且两端都在圆上的线段叫做直径。直径用字母d表示。
追问:直径必须具备哪些条件?
③想一想:直径有多少条?你是怎样发现的?让学生画出几条直径,并且量一量,你又发现了什么?(直径有无数条,同圆或等圆的直径相等。)
(4)半径与直径的关系。
①通过刚才的画一画,量一量。你除了发现半径、直径的特征外,还发现了什么?(直径等于半径的2倍,或半径等于直径的一半。)
②用字母表示上述关系:
③老师拿出一个直径是40厘米的圆,这个圆大不大?它的半径与你手中的那个圆的半径相等吗?它的半径是你手中那个圆的直径的一半吗?说明了什么?(圆的特征及直径、半径的关系必须在同一个圆或相等的圆中才存在。)
(5)练习。
(1)课本第108页的“做一做”:
用彩色笔标出下面各圆的半径和直径。
说明理由。
(2)课本第109页第3题:填表
(3)课本第109页第5题:
①指出下边圆里的几条线段中哪一条是直径。
②量一量这几条线段的长度,可以知道,两端都在圆上的线段,直径是最(    )的一条。
③根据这个道理,我们就可以用下面的方法测量没有标出圆心的圆的直径。
出示投影片。
3.学会用圆规画圆。
(1)教师拿出一个圆规,提问:谁认识这个工具?(圆规)你知道它是干什么用的吗?
(2)学生初步尝试画圆,请你用手中的圆规试着在纸上画一个圆,你是分几步画的?可以互相讨论,互相帮助。
(3)谁来给大家说说你是怎么画的?老师按照你说的在黑板上画一个圆。
一边画,一边归纳画圆的三个步骤:
① 把圆规的两脚分开,定好两脚间的距离。圆规两脚间的距离就是什么?(半径)
② 把有针尖的一只脚固定在一点上。
提问:画圆时固定的一点就是什么?(圆心)
③ 把装有铅笔尖的一只脚旋转一周,就可以画出一个圆。
提醒学生画圆时应注意以下两点:
① 重心应放在有针尖的一脚;
② 两脚间的距离不准变。
(4)请你按照上面的步骤,在作业本上再画一个圆。
(5)用圆规画出半径为3厘米的一个圆,并用字母O,r,d分别标出它的圆心、半径和直径。
(6)看看你在纸上画的这几个圆有什么不同之处?(这几个圆的位置不同,大小也不相同。)
想一想:圆的位置是由谁决定的?圆的大小又与谁有关系?(圆的位置是由圆心决定的,圆的大小是由圆的半径决定的。)
板书:圆心决定圆的位置,半径决定圆的大小。
小结:画圆时应先确定圆心,然后按照指定的半径长度为半径来画圆。圆的大小取决于半径的长短,与圆心的位置无关。
(三)课堂总结
通过今天的学习,你都学到了哪些知识?
这些知识可以帮助我们解决许许多多实际问题:
日常生活中,为什么把车轮都要做成圆的?车轴应装在哪里?这是为什么?(圆心到圆上任意一点的距离都相等,车轴应放在圆心的位置,这样,车轮滚动时,车轴才能保持与地面一样的距离,从而使车辆行驶平稳。)
(四)布置作业
课本第106页第4,6题。
课堂教学设计说明
本教案注重了学生观察能力、动手操作能力、分析概括能力、空间想象等能力的培养。
教学过程的设计可分为三个层次。
第一层次,通过复习导入,帮助学生区分以前学过的平面图形和圆形。通过计算机演示甩小球的过程,使学生形象、直观地了解了圆的形成过程。
第二层次,学习新课的过程中,首先是请学生借助工具画圆,接着通过看一看、画一画、量一量、说一说等课堂活动,使学生多种感官参与学习,不仅调动了学生学习的积极性,而且对知识有了较深刻的理解。最后,通过自己尝试着用圆规画圆,总结出方法,并与前面知识相联系,从而巩固了新知识。
第三层次,课后小结解决了一些日常生活中的实际问题,提高了学生学习数学的兴趣。

 
热门小学数学相关范文