2015年春季新版审定新人教版小学五年级下册数学教材分析材料


2015年春季新版审定新人教版小学五年级下册数学教材分析材料
第一部分 前言
数学是研究数量关系和空间形式的科学。数学与人类发展和社会进步息息相关,随着现代信息技术的飞速发展,数学更加广泛应用于社会生产和日常生活的各个方面。数学作为对于客观现象抽象概括而逐渐形成的科学语言与工具,不仅是自然科学和技术科学的基础,而且在人文科学与社会科学中发挥着越来越大的作用。特别是20世纪中叶以来,数学与计算机技术的结合在许多方面直接为社会创造价值,推动着社会生产力的发展。
数学是人类文化的重要组成部分,数学素养是现代社会每一个公民应该具备的基本素养。作为促进学生全面发展教育的重要组成部分,数学教育既要使学生掌握现代生活和学习中所需要的数学知识与技能,更要发挥数学在培养人的思维能力和创新能力方面的不可替代的作用。
一、课程性质
义务教育阶段的数学课程是培养公民素质的基础课程,具有基础性、普及性和发展性。数学课程能使学生掌握必备的基础知识和基本技能,培养学生的抽象思维和推理能力;培养学生的创新意识和实践能力;促进学生在情感、态度与价值观等方面的发展。义务教育的数学课程能为学生未来生活、工作和学习奠定重要的基础。
二、课程基本理念
1.数学课程应致力于实现义务教育阶段的培养目标,要面向全体学生,适应学生个性发展的需要,使得:人人都能获得良好的数学教育,不同的人在数学上得到不同的发展。
2.课程内容要反映社会的需要、数学的特点,要符合学生的认知规律。它不仅包括数学的结果,也包括数学结果的形成过程和蕴涵的数学思想方法。课程内容的选择要贴近学生的实际,有利于学生体验与理解、思考与探索。课程内容的组织要重视过程,处理好过程与结果的关系;要重视直观,处理好直观与抽象的关系;要重视直接经验,处理好直接经验与间接经验的关系。课程内容的呈现应注意层次性和多样性。
3.教学活动是师生积极参与、交往互动、共同发展的过程。有效的教学活动是学生学与教师教的统一,学生是学习的主体,教师是学习的组织者、引导者与合作者。
数学教学活动,特别是课堂教学应激发学生兴趣,调动学生积极性,引发学生的数学思考,鼓励学生的创造性思维;要注重培养学生良好的数学学习习惯,使学生掌握恰当的数学学习方法。
学生学习应当是一个生动活泼的、主动的和富有个性的过程。认真听讲、积极思考、动手实践、自主探索、合作交流等,都是学习数学的重要方式。学生应当有足够的时间和空间经历观察、实验、猜测、计算、推理、验证等活动过程。
教师教学应该以学生的认知发展水平和已有的经验为基础,面向全体学生,注重启发式和因材施教。教师要发挥主导作用,处理好讲授与学生自主学习的关系,引导学生独立思考、主动探索、合作交流,使学生理解和掌握基本的数学知识与技能,体会和运用数学思想与方法,获得基本的数学活动经验。
4.学习评价的主要目的是为了全面了解学生数学学习的过程和结果,激励学生学习和改进教师教学。应建立目标多元、方法多样的评价体系。评价既要关注学生学习的结果,也要重视学习的过程;既要关注学生数学学习的水平,也要重视学生在数学活动中所表现出来的情感与态度,帮助学生认识自我、建立信心。
5.信息技术的发展对数学教育的价值、目标、内容以及教学方式产生了很大的影响。数学课程的设计与实施应根据实际情况合理地运用现代信息技术,要注意信息技术与课程内容的整合,注重实效。要充分考虑信息技术对数学学习内容和方式的影响,开发并向学生提供丰富的学习资源,把现代信息技术作为学生学习数学和解决问题的有力工具,有效地改进教与学的方式,使学生乐意并有可能投入到现实的、探索性的数学活动中去。
三、课程设计思路
义务教育阶段数学课程的设计,充分考虑本阶段学生数学学习的特点,符合学生的认知规律和心理特征,有利于激发学生的学习兴趣,引发学生的数学思考;充分考虑数学本身的特点,体现数学的实质;在呈现作为知识与技能的数学结果的同时,重视学生已有的经验,使学生体验从实际背景中抽象出数学问题、构建数学模型、寻求结果、解决问题的过程。
按以上思路具体设计如下。
(一) 学段划分
为了体现义务教育数学课程的整体性,本标准统筹考虑九年的课程内容。同时,根据学生发展的生理和心理特征,将九年的学习时间划分为三个学段:第一学段(1~3年级)、第二学段(4~6年级)、第三学段(7~9年级)。
(二) 课程目标
义务教育阶段数学课程目标分为总目标和学段目标,从知识技能、数学思考、问题解决、情感态度等四个方面加以阐述。
数学课程目标包括结果目标和过程目标。结果目标使用“了解”“理解”“掌握”“运用”等行为动词表述,过程目标使用“经历”“体验”“探索”等行为动词表述(行为动词解释见附录1)。
(三) 课程内容
在各学段中,安排了四个部分的课程内容:“数与代数”“图形与几何”“统计与概率”“综合与实践”。其中,“综合与实践”内容设置的目的在于培养学生综合运用有关的知识与方法解决实际问题,培养学生的问题意识、应用意识和创新意识,积累学生的活动经验,提高学生解决现实问题的能力。
“数与代数”的主要内容有:数的认识,数的表示,数的大小,数的运算,数量的估计;字母表示数,代数式及其运算;方程、方程组、不等式、函数等。
“图形与几何”的主要内容有:空间和平面基本图形的认识,图形的性质、分类和度量;图形的平移、旋转、轴对称、相似和投影;平面图形基本性质的证明;运用坐标描述图形的位置和运动。
“统计与概率”的主要内容有:收集、整理和描述数据,包括简单抽样、整理调查数据、绘制统计图表等;处理数据,包括计算平均数、中位数、众数、方差等;从数据中提取信息并进行简单的推断;简单随机事件及其发生的概率。
“综合与实践”是一类以问题为载体、以学生自主参与为主的学习活动。在学习活动中,学生将综合运用“数与代数”“图形与几何”“统计与概率”等知识和方法解决问题。“综合与实践”的教学活动应当保证每学期至少一次,可以在课堂上完成,也可以课内外相结合。提倡把这种教学形式体现在日常教学活动中。
在数学课程中,应当注重发展学生的数感、符号意识、空间观念、几何直观、数据分析观念、运算能力、推理能力和模型思想。为了适应时代发展对人才培养的需要,数学课程还要特别注重发展学生的应用意识和创新意识。
数感主要是指关于数与数量、数量关系、运算结果估计等方面的感悟。建立数感有助于学生理解现实生活中数的意义,理解或表述具体情境中的数量关系。
符号意识主要是指能够理解并且运用符号表示数、数量关系和变化规律;知道使用符号可以进行运算和推理,得到的结论具有一般性。建立符号意识有助于学生理解符号的使用是数学表达和进行数学思考的重要形式。
空间观念主要是指根据物体特征抽象出几何图形,根据几何图形想象出所描述的实际物体;想象出物体的方位和相互之间的位置关系;描述图形的运动和变化;依据语言的描述画出图形等。
几何直观主要是指利用图形描述和分析问题。借助几何直观可以把复杂的数学问题变得简明、形象,有助于探索解决问题的思路,预测结果。几何直观可以帮助学生直观地理解数学,在整个数学学习过程中都发挥着重要作用。
数据分析观念包括:了解在现实生活中有许多问题应当先做调查研究,收集数据,通过分析做出判断,体会数据中蕴涵着信息;了解对于同样的数据可以有多种分析的方法,需要根据问题的背景选择合适的方法;通过数据分析体验随机性,一方面对于同样的事情每次收集到的数据可能不同,另一方面只要有足够的数据就可能从中发现规律。数据分析是统计的核心。
运算能力主要是指能够根据法则和运算律正确地进行运算的能力。培养运算能力有助于学生理解运算的算理,寻求合理简洁的运算途径解决问题。
推理能力的发展应贯穿于整个数学学习过程中。推理是数学的基本思维方式,也是人们学习和生活中经常使用的思维方式。推理一般包括合情推理和演绎推理,合情推理是从已有的事实出发,凭借经验和直觉,通过归纳和类比等推断某些结果;演绎推理是从已有的事实(包括定义、公理、定理等)和确定的规则(包括运算的定义、法则、顺序等)出发,按照逻辑推理的法则证明和计算。在解决问题的过程中,两种推理功能不同,相辅相成:合情推理用于探索思路,发现结论;演绎推理用于证明结论。
模型思想的建立是学生体会和理解数学与外部世界联系的基本途径。建立和求解模型的过程包括:从现实生活或具体情境中抽象出数学问题,用数学符号建立方程、不等式、函数等表示数学问题中的数量关系和变化规律,求出结果并讨论结果的意义。这些内容的学习有助于学生初步形成模型思想,提高学习数学的兴趣和应用意识。
应用意识有两个方面的含义,一方面有意识利用数学的概念、原理和方法解释现实世界中的现象,解决现实世界中的问题;另一方面,认识到现实生活中蕴涵着大量与数量和图形有关的问题,这些问题可以抽象成数学问题,用数学的方法予以解决。在整个数学教育的过程中都应该培养学生的应用意识,综合实践活动是培养应用意识很好的载体。
创新意识的培养是现代数学教育的基本任务,应体现在数学教与学的过程之中。学生自己发现和提出问题是创新的基础;独立思考、学会思考是创新的核心;归纳概括得到猜想和规律,并加以验证,是创新的重要方法。创新意识的培养应该从义务教育阶段做起,贯穿数学教育的始终。
第二部分 课程目标 一、总目标
通过义务教育阶段的数学学习,学生能:
1. 获得适应社会生活和进一步发展所必需的数学的基础知识、基本技能、基本思想、基本活动经验。
2. 体会数学知识之间、数学与其他学科之间、数学与生活之间的联系,运用数学的思维方式进行思考,增强发现和提出问题的能力、分析和解决问题的能力。
3. 了解数学的价值,提高学习数学的兴趣,增强学好数学的信心,养成良好的学习习惯,具有初步的创新意识和科学态度。
总目标从以下四个方面具体阐述:
  知识
技能 ●经历数与代数的抽象、运算与建模等过程,掌握数与代数的基础知识和基本技能。
●经历图形的抽象、分类、性质探讨、运动、位置确定等过程,掌握图形与几何的基础知识和基本技能。
●经历在实际问题中收集和处理数据、利用数据分析问题、获取信息的过程,掌握统计与概率的基础知识和基本技能。
●参与综合实践活动,积累综合运用数学知识、技能和方法等解决简单问题的数学活动经验。
数学
思考 ●建立数感、符号意识和空间观念,初步形成几何直观和运算能力,发展形象思维与抽象思维。
●体会统计方法的意义,发展数据分析观念,感受随机现象。
●在参与观察、实验、猜想、证明、综合实践等数学活动中,发展合情推理和演绎推理能力,清晰地表达自己的想法。
●学会独立思考,体会数学的基本思想和思维方式。
问题
解决 ●初步学会从数学的角度发现问题和提出问题,综合运用数学知识解决简单的实际问题,增强应用意识,提高实践能力。
●获得分析问题和解决问题的一些基本方法,体验解决问题方法的多样性,发展创新意识。
●学会与他人合作交流。
●初步形成评价与反思的意识。
情感
态度 ●积极参与数学活动,对数学有好奇心和求知欲。
●在数学学习过程中,体验获得成功的乐趣,锻炼克服困难的意志,建立自信心。
●体会数学的特点,了解数学的价值。
●养成认真勤奋、独立思考、合作交流、反思质疑等学习习惯。
●形成坚持真理、修正错误、严谨求实的科学态度。
总目标的这四个方面,不是相互独立和割裂的,而是一个密切联系、相互交融的有机整体。在课程设计和教学活动组织中,应同时兼顾这四个方面的目标。这些目标的整体实现,是学生受到良好数学教育的标志,它对学生的全面、持续、和谐发展有着重要的意义。数学思考、问题解决、情感态度的发展离不开知识技能的学习,知识技能的学习必须有利于其他三个目标的实现。
五年级下册教材介绍
人民教育出版社、课程教材研究所小学数学课程教材研究开发中心编写的《义务教育课程标准实验教科书 数学(1~6年级)》,是以《全日制义务教育数学课程标准(实验稿)》(以下简称《数学课程标准》)的基本理念和所规定的教学内容为依据,在总结现行九年义务教育小学数学教材研究和使用经验的基础上编写的。这套教材的各册都通过了全国中小学教材审查委员会的审查,并于2001年9月开始陆续进入新一轮课程改革实验区使用。从近5年来所收集到的各种反馈信息看,这套教材受到广大教师、学生和家长的普遍好评,在体现《数学课程标准》的改革理念、促进课堂教学的改革、满足各地教育发展需求等方面都能起到了很好的作用。
    《义务教育课程标准实验教科书 数学 五年级下册》的研究与编写,仍然坚持“在体现新理念的同时注意具体措施的可行性”“处理好继承与发展的关系”两个基本原则,力求使实验教材具有创新、实用、开放的特点。注意符合教育学、心理学的原理和学生的年龄特征,关注学生的兴趣和经验,体现数学知识的形成过程,努力为学生的数学学习提供生动活泼、主动求知的材料与环境;使学生在获得数学基础知识、形成基本技能的同时得到情感、态度、价值观的熏陶与培养,促进学生全面而富有个性的发展。
     本册教材的教学内容主要有:图形的变换,因数与倍数,长方体和正方体,分数的意义和性质,分数的加法和减法,统计,数学广角和数学实践活动等。对于这些教学内容的编排和处理,以整套教材的编写思想、编写原则等为指导,体现了前几册教材同样的风格与特点,所以本册教材仍然具有内容丰富、关注学生的经验与体验、体现知识的形成过程、鼓励算法多样化、改变学生的学习方式,体现开放性的教学方法等特点。同时,由于教学内容的不同,本册教材还具有下面几个明显的特点。
1.改进因数与倍数教学的编排,体现数学教学改革的新理念,培养学生的数学素养。
    在小学阶段,有关因数与倍数的知识是传统的教学内容,以往人们认为,它既是小学生应该掌握的重要的基础知识,又是发展小学生逻辑思维的良好素材。同时,人们普遍认识,这部分内容概念集中,比较抽象,概念之间的联系紧密,学生理解起来比较困难。也由于以往对这部分内容的编排,联系实际的素材不多,学习这部分内容,既需要学生理解并记忆一些概念,又要求能够运用这些概念进行一定的推理、判断。所以,学习过程显得比较枯燥。因此,这部分内容向来是小学数学教学的难点内容。
本套教材对这部分内容的处理,主要的依据是《标准》的要求和所提倡的理念。 “在《标准》中这部分内容的要求有所降低,明确在1~100的自然数中认识有关的概念和性质,并且这部分内容不作为一个独立的领域出现,在教材的编排中可以将这部分内容分散到数的认识和计算中去。”①
    本册教材的编排既注意体现《标准》中关于因数与倍数教学与教材编排的要求,同时注意体现近年来有关这部分内容教学改革的经验。首先,将以往教材“因数与倍数”的教学内容分散编排,安排在本册的两个单元里教学。第二单元“因数与倍数”包括因数和倍数的意义,2、5、3的倍数的特征,质数和合数的含义等,重点是让学生了解和掌握这些重要的概念;在第四单元“分数的意义和性质”中,结合约分教学最大公因数的概念和求法,结合通分教学最小公倍数的概念和求法。其次,注意所涉及的数的范围在1~100的自然数内,避免题目中的数目过大。此外,在例题的安排、素材的选取、习题的设计等方面都采取了新的措施,使得上述两单元中相关内容的编排与以往的教材相比有下面几个特点:
    (1)精简教学内容,突出基本概念教学。
    ①不再以整除概念为基础引出因数与倍数,而是在直观的基础上,通过乘法算式得出因数与倍数的概念。由于学生已经积累了丰富的区分整除与有余数除法的知识和经验,对整除的含义能够清晰的理解,不出现整除的定义不会对学生理解其他概念产生影响。因此,本套教材中不再出现“整除”的数学化定义,而是借助整除的模式na=b直接引出因数和倍数的概念。②“分解质因数” 和“用短除法分解质因数”不作为正式教学内容。在以往的教材中,“分解质因数” 及“用短除法分解质因数”是作为求最大公因数、最小公倍数的基础知识和技能安排的,因此,“分解质因数”一直作为必学内容编排。而在本册教材中,由于允许学生采用多种方法求最大公因数和最小公倍数,“分解质因数”失去了其基础知识的作用,因此不再作为正式教学内容,而只作为一个补充知识,安排在“你知道吗?”中介绍。
    (2)增加了直观和联系实际。
    以往人们普遍认为,这部分内容的教学过于形式化,一系列的概念引出,似乎都与现实生活无关;从概念到概念,似乎都难以直观。而小学数学的大多数教学内容的引出都注意从实际引入,注重提供直观支柱。因此,本套教材对这部分内容的编排,注意内容的呈现、展开尽量联系实际,贴近学生的认知特点。例如, 2、5、3的倍数的特征的教学,例题和习题都增加了联系学生生活实际的素材和插图;用铺地砖的问题情境引出最大公因数和最小公倍数的概念等。这样的处理便于揭示数学与现实世界的联系,有利于学生理解有关概念的现实意义,也有利于培养学生的数学抽象能力。
    (3)增加探索性和开放性。
    例如,“3的倍数的特征”的得出,“做100以内的质数表”,找出最大公因数和最小公倍数的过程,等等,都体现了放手让学生探究,鼓励用多种方法解决问题,培养学生的探索意识和解决问题的能力。
    (4)加强了拓展性和知识性。
    内容精简之后,出于拓展学生知识面的考虑,教材在相关教学内容之后,利用“你知道吗?”“生活中的数学”等栏目,安排较多的拓展性知识作为阅读资料提供给学生。例如,介绍完全数(第14页)、互质数(第83页)的概念,奇数和偶数在日常生活中的应用,哥德巴赫猜想,以及怎样利用分解质因数的方法求两个数的最大公因数(第81页)等,以丰富学生的数论知识,激发探求的欲望,培养学生对学习数学、探索数学持久而稳定的兴趣。
综上所述可以看出,这样的编排使因数与倍数教学的教育价值得到扩充与提高。通过这样的教学,不仅可以使学生很好的掌握与数论相关的最基础的知识,体会数学学习的乐趣和实际价值,同时可使学生获得逻辑思维的训练,自主探索意识和能力的培养,从而逐步提高数学素养。
2.改进认识分数的编排,注重沟通知识间的相互联系,加强学生对分数意义的理解。
    从本学期开始,学生将要系统地学习分数的意义和性质、分数的四则运算。同整数、小数知识一样,分数知识也是小学数学教学的重要内容,是进一步学习数学和其他学科所必需的基础知识。分数的概念比较难理解,计算起来也比较复杂。为了便于学生理解和掌握分数,本套教材仍然采用了以往教材的编排体系,把分数划分为两个阶段教学。第一段安排在三年级上册,借助操作直观,使学生对分数有初步的认识,虽然也出现了简单的分数大小比较和同分母分数加、减法,目的是为了帮助学生更好地理解分数的初步概念,给学生积累一些感性知识。在系统认识了小数和初步认识了分数的基础上,本册将引导学生由感性认识上升到理性认识,概括出分数的意义,比较完整地从分数的产生、分数与除法的关系等方面加深对分数意义的理解,进而学习并理解与分数有关的基本概念,掌握必要的约分、通分、分数与小数互化等技能,以及分数的加、减法计算。在具体安排上,本套教材一方面注意体现《标准》所提倡的教学理念,提供丰富的学习素材,在学生已有知识和经验的基础上阐述新的内容,给学生创设自主探索的空间,同时,还注意采取下面几个方面的措施:
    (1)加强直观,加深学生对分数意义的理解。
    在小学数学里,引进分数概念是小学生数概念的一次重要扩展。对于小学生而言,分数比较抽象,学生在实际生活中遇到分数也比较少,因此理解和掌握是比较困难的。教材的编排比以往更重视用直观的手段帮助学生体会、理解有关知识。例如,“分数的产生”提供古人测量与孩子分物的两幅直观图,帮助学生感悟分数是怎样产生的,促进对分数意义的理解;“分数的意义”则通过直观插图,从两个方面说明 的含义(可以表示一个物体的 ,也可以表示一些物体的 ),在此基础上给出分数单位的概念,揭示分数表示部分与整体的关系,加深学生对分数概念的理解。
    (2)对部分教学内容作了适当的调整或精简。
    其一,求一个数是另一个数的几分之几的实际问题适当后移,不再安排在本单元中。其二,分数大小比较与通分结合在一起教学。其三,将以往“约数与倍数”的部分内容与分数的相关知识结合起来教学。即:将公因数、最大公因数与约分编为一节;同样,将公倍数、最小公倍数与通分编为一节。这样的调整,分散了教学的难点,充分利用学生已有知识的迁移,降低了学习的难度,有利于学生认识的螺旋上升。
    (3)加强开放性,培养学生灵活的思维和解决问题的能力。
    例如,教学求两个数的最大公因数或最小公倍数,不再采用唯一的、固定的短除法分解质因数的方法,而是引导学生采用多种方法“找”最大公因数和最小公倍数。教学分数化成小数的方法,改进了过去只介绍单一的一般算法的做法,还介绍了利用分数的基本性质把分母不是10,100,1000……的分数,转化为分母是10,100,1000……的分数,再改写成小数。这样的编排体现了算法多样化、尊重学生个性化的选择,培养学生善于从不同的角度思考和解决问题的意识和能力。
    (4)加强联系实际,从现实问题情境引出数学问题,得出数学知识。
    如前所述,有关分数、整除的知识都比较抽象,本套教材特别注意联系实际,从解决实际问题的角度入手探讨新知识。例如,无论是公因数与最大公因数、公倍数与最小公倍数的引入,还是约分、通分的给出,教材都创设了适当的现实问题情境,进而在解决实际问题中,抽象出数学概念,得出数学方法,揭示数学与现实世界的联系。这样编排既有利于学生理解公因数、最大公因数概念的现实意义,也有利于培养学生的数学抽象能力,还有利于培养学生的数学应用意识和解决实际问题的能力。
3.提供丰富的空间与图形的教学内容,注重动手实践与自主探索,促进学生空间观念的发展。
    小学阶段空间与图形教学的主要目标是发展学生的空间观念,与前几册一样,本册教材继续把促进学生空间观念的发展作为空间与图形内容编排的研究重点。在教学内容方面安排了“图形的变换”“长方体和正方体”两个单元。
    “图形的变换”的内容是在第一学段学习基础上的进一步扩展和提高。在以前的学习中,学生初步感知了生活中的对称、平移和旋转现象,初步认识了轴对称图形,能在方格纸上画简单的轴对称图形或画出一个简单图形沿水平或垂直方向平移后的图形。本册在此基础上,让学生进一步认识图形的轴对称,探索图形成轴对称的特征和性质,学习在方格纸上画出一个图形的轴对称图形和一个简单图形旋转90o后的图形,发展空间观念。教材的编排,首先注意利用学生已有知识引导学生探索新知识。例如,探索图形成轴对称的特征和性质,先让学生复习轴对称图形和画对称轴,再让学生观察轴对称图形的特征和画出一个轴对称图形的另一半等,从而使学生在已有知识的基础上加深对轴对称图形特征的认识。其次,加强直观教学图形的特征。例如,图形的旋转的教学,让学生观察钟表表针和风车旋转的过程,认识它们是怎样按照顺时针或逆时针方向旋转的,明确旋转的含义,探索图形的旋转的特征和性质。第三,设计大量的活动,帮助学生理解图形的性质和变换,发展空间观念。不仅设计了画一画、剪一剪等操作活动,而且还设计了需要学生想像、猜测和推理进行的探究活动。例如,让学生判断某个图案分别是由哪种方法剪出来的,这就需要学生根据图案的特征,在头脑中对这个图案进行“折叠”和“剪开”,从而使学生的空间想像力和思维能力得到锻炼的机会。
    “长方体和正方体”单元,则是学生系统认识立体图形特征的开始。从认识平面图形扩展到认识立体图形,是学生发展空间观念的一次飞跃。长方体和正方体是最基本的立体图形,通过教学不仅可以使学生掌握有关立体图形方面的最基础的知识,而且可以使学生的对自己周围的空间和空间中的物体形成初步的观念,为进一步学习与发展打下基础。在以往的教材中,这些部分内容的编排往往侧重于理解和掌握立体图形的特征和表面积、体积的计算方法,而对于促进学生空间观念的发展在学习素材和实践操作方面都显不够。本套教材在编排上突出的变化是,加强动手实践、自主探索,让学生经历知识的形成过程,使学生得到较多的有关空间观念的训练机会。例如,每种图形的特征,均采用让学生动手实验,自主探索得到;通过“乌鸦喝水”的故事、石头放入盛水的杯子里的实验等,以形象、生动的方式,为学生感知物体占有空间,理解体积概念提供丰富的感性经验。又如,长方体体积的计算方法,先让学生用方木块拼摆长方体,通过对摆法不同的长方体的相关数据的观察、分析和归纳,自己发现长方体的体积与它的长、宽、高之间的内在联系,再总结出长方体体积的计算公式。教材编排还加强了联系实际。例如,从现实生活素材抽象出长方体和正方体的几何图形;在介绍了容积概念后,还介绍了用排水法求不规则物体体积的方法;在练习中适当增加了解决实际问题的题目;等等。这些新的变化使以往知识容量大且比较抽象的这一单元,为学生的学习和教师的教学都提供了更为丰富的学习素材和开放的教学空间。

 
热门五年级相关范文