教材分析
以求根公式为基础,教材通过求根公式求出的根x1、x2,得出一元二次方程根与系数的关系,以及以求x1、x2为根的一元二次方程。然后通过例题掌握利用根与系数的关系简化一些计算,和由已知一元二次方程的一个根求出另一个根与某些字母系数的取值。
学情分析
1.会找一元二次方程 ax2+bx+c=0(a≠0)的系数a、b、c
2、会利用求根公式求出一元二次方程的根x1,x2
3.出示一些学生所熟悉和感兴趣的东西,结合一元二次方程求根公式使他们在现代化的教学模式和传统的教学模式相结合的基础上,掌握一元二次方程根与系数的关系。
教学目标
1、知识目标:在理解的基础上掌握一元二次方程根与系数的关系式,能运用根与系数的关系求某些代数式的值(例如两个根的倒数和与平方数,两根之差),由已知一元二次方程的一个根求出另一个根与某些字母系数的取值。
2、能力目标:经历观察、实验、猜想、证明等数学活动过程,发展推理能力,能有条理地、清晰地阐述自己的观点,进一步培养学生的创新意识和创新精神。
3、情感目标:通过情境教学过程,激发学生的求知欲望,培养学生积极学习数学的态度。体验数学活动中充满着探索与创造,体验数学活动中的成功感,建立自信心。
教学重点和难点
1、重点:一元二次方程根与系数的关系。
2、难点:从具体方程的根发现一元二次方程根与系数之间的关系,并用语言表述,以及由一个已知方程求作新方程,使新方程的根与已知的方程的根有某种关系,比较抽象,学生真正掌握有一定的难度,是教学的难点。
本帖最后由 网站工作室 于 2012-10-28 16:22 编辑
教学过程 | ||||
教学环节 | 教师活动 | 预设学生行为 | 设计意图 | |
问题引入 | 解下列方程:x2-2x-3=0 x2+5x+6=0并根据以上的求解填写下表请观察上表,你能发现两根之和、两根之积与方程的系数之间有什么关系吗?问题1猜想:方程ax2+bx+c=0(a≠0)的根x1,x2与a、b、c之间的关系:____________。问题2.你能证明上面的猜想吗?请证明,并用文字语言叙述说明。 | 若方程ax2+bx+c=0(a≠0)的两根为x1= ,x2= 。则 x1+x2= + = ;x1 x2= ·先独立完成,再小组交互,形成统一答案,最后小组汇报 | 由此得出一元二次方程的根与系数的关系;还可以让学生用自己的语言表述这种关系,来加深理解和记忆。这个关系是一个法国数学家韦达发现的,所以也称之为韦达定理。 | |
探索新知 | 问题3.在方程ax2+bx+c=0(a≠0)中,a、b、c的作用①二次项系数a能否为零(决定着方程是否为二次方程);②当a≠0时,b=0,a、c异号,方程两根互为相反数;③当a≠0时,根据△=b2-4ac可判定根的情况;④当a≠0,b2-4ac≥0时,x1+x2= ,x1x2= 。 ⑤当a≠0,c=0时,方程必有一根为0 | 先独立完成,再小组交互,形成统一答案,小组汇报后,教师再补讲、精讲 | 多要素组合,避免注入式地讲授一元二次方程根与系数的关系,体现学生的主体学习特性,培养了学生的创新意识和创新精神。 | |
课时训练 | 根据根与系数的关系写出下列方程的两根之和与两根之积(方程两根为x1,x2、k是常数) | 1)2 x2-3x+1=0 x1+x2= ______ x1x2=______ (2)3 x2+5x=0 x1+x2= ______ x1x2=______ (3)5 x2x2+x-2=0 x1+x2= ______ x1x2=______ (4)5 x2+kx-6=0 x1+x2= ______ x1x2=______ 思考:x12+ x22=? | 单独完成,小组交互,甚至大组交互,提高强化次数 | |
归纳小结 | 本课主要研究了什么? | 1、方程的根是由系数决定的。2、a≠0时,方程ax2+bx+c=0是一元二次方程。3、当a≠0,b2-4ac≥0时,x1+x2=,x1x2=。4、b2-4ac的值可判定根的情况。5、方程根与系数关系的有关应用。 | 回顾总结 | |
板书设计 | ||||
一元二次方程根与系数的关系 如果ax2+bx+c=0(a≠0)的两根是x1,x2,那么x1+x2= ,x1x2= 。 ①二次项系数a是否为零,决定着方程是否为二次方程;②当a≠0时,b=0,a、c异号,方程两根互为相反数;③当a≠0时,△=b2-4ac可判定根的情况;④当a≠0,b2-4ac≥0时,x1+x2= ,x1x2= 。 ⑤当a≠0,c=0时,方程必有一根为0。 |
教学反思
1、一元二次方程根与系数的关系的推导是在求根公式的基础上进行。它深化了两根的和与积同系数之间的关系,是我们今后继续研究一元二次方程根的情况的主要工具,必须掌握,为进一步使用打下基础。
2.以一元二次方程根与系数的关系的探索与推导,向学生展示认识事物的一般规律,提倡积极思维,勇于探索的精神,借此锻炼学生分析、观察、归纳的能力及推理论证的能力
3.一元二次方程的根与系数的关系,在中考中多以填空,选择,解答题的形式出现,考查的频率较高,也常与几何、二次函数等问题结合考查,是考试的热点,它是方程理论的重要组成部分。
4、使学生体会解题方法的多样性,开阔解题思路,优化解题方法,增强择优能力。力求让学生在自主探索和合作交流的过程中进行学习,获得数学活动小组合作的经验,教师应注意引导