第一单元时分秒
1、钟面上有3根针,它们是(时针)、(分针)、(秒针),其中走得最快的是(秒针),走得最慢的是(时针)。
2、钟面上有(12)个数字,(12)个大格,(60)个小格;每两个数间是(1)个大格,也就是(5)个小格。
3、时针走1大格是(1)小时;分针走1大格是(5)分钟,走1小格是( 1)分钟;秒针走1大格是(5)秒钟,走1小格是(1)秒钟。
4、时针走1大格,分针正好走(1)圈,分针走1圈是(60)分,也就是(1)小时。时针走1圈,分针要走(12)圈。
5、分针走1小格,秒针正好走(1)圈,秒针走1圈是(60)秒,也就是(1)分钟。
6、时针从一个数走到下一个数是(1小时)。分针从一个数走到下一个数是(5分钟)。秒针从一个数走到下一个数是(5秒钟)。
7、钟面上时针和分针正好成直角的时间有:(3点整)、(9点整)。
8、公式。(每两个相邻的时间单位之间的进率是60)
1时=60分 1分=60秒
半时=30分 60分=1时
60秒=1分 30分=半时
第二、四单元万以内的加法和减法(一)(二)
1、最大的几位数和最小的几位数
最大的一位数是9, 最小的一位数是0.
最大的二位数是99, 最小的二位数是10
最大的三位数是999, 最小的三位数是100
最大的四位数是9999, 最小的四位数是1000
最大的五位数是99999, 最小的五位数是10000
最大的三位数比最小的四位数小1。
2、读数和写数 (读数时写汉字 写数时写阿拉伯数字)
①一个数的末尾不管有一个0或几个0,这个0都不读。
②一个数的中间有一个0或连续的两个0,都只读一个0。
3、数的大小比较:
①位数不同的数比较大小,位数多的数大。
②位数相同的数比较大小,先比较这两个数的最高位上的数,如果最高位上的数相同,就比较下一位,以此类推。
4、求一个数的近似数:
记忆:看最位的后面一位,如果是0-4则用四舍法,如果是5-9就用五入法。
最大的三位数是位999,最小的三位数是100,最大的四位数是9999,最小的四位数是1000。最大的三位数比最小的四位数小1。
5、被减数是三位数的连续退位减法的运算步骤:
① 列竖式时相同数位一定要对齐;
② 减法时,哪一位上的数不够减,从前一位退1;如果前一位是0,则再从前一位退1。
6、在做题时,我们要注意中间的0,因为是连续退位的,所以从百位退1到十位当10后,还要从十位退1当10,借给个位,那么十位只剩下9,而不是10。(两个三位数相加的和:可能是三位数,也有可能是四位数。)
7、笔算加减法时:相同数位要对齐;从个位算起。哪一位上的数相加满10,就向前一位进1;哪一位上的数不够减,就从前一位退1当作10,加本位再减;如果前一位是0,则再从前一位退1。(两个三位数相加的和:可能是三位数,也有可能是四位数。)
特别注意:中间是0的退位减法,例如:309-189;1000-428等
8、⑴加法公式:加数+另一个加数=和
加法的验算:
①交换两个加数的位置再算一遍。
另一个加数+加数=和
②和-另一个加数=加数
⑵减法公式:被减数-减数=差
减法的验算:
①差+减数=被减数
②减数+差=被减数
③被减数-差=减数
特别注意:验算时“验算”别忘了写!!!
第三单元测量
1、在生活中,量比较短的物品,可以用(毫米、厘米、分米)做单位;量比较长的物体,常用(米)做单位;测量比较长的路程一般用(千米)做单位,千米也叫(公里)
2、1厘米的长度里有(10)小格,每小格的长度(相等),都是(1)毫米。
3、1枚1分的硬币、尺子、磁卡、小纽扣、钥匙的厚度大约是1毫米。
4、在计算长度时,只有相同的长度单位才能相加减。
小技巧:换算长度单位时,把大单位换成小单位就在数字的末尾添加0(关系式中有几个0,就添几个0);把小单位换成大单位就在数字的末尾去掉0(关系式中有几个0,就去掉几个0)。
5、长度单位的关系式有:( 每两个相邻的长度单位之间的进率是10 )
① 进率是10:
1米=10分米, 1分米=10厘米,
1厘米=10毫米, 10分米=1米,
10厘米=1分米, 10毫米=1厘米,
② 进率是100:
1米=100厘米, 1分米=100毫米,
100厘米=1米, 100毫米=1分米
③ 进率是1000:
1千米=1000米, 1公里==1000米,
1000米=1千米, 1000米 =1公里
6、当我们表示物体有多重时,通常要用到(质量单位)。在生活中,称比较轻的物品的质量,可以用( 克 )做单位;称一般物品的质量,常用(千克 )做单位;计量较重的或大宗物品的质量,通常用( 吨 )做单位。
小技巧:在“吨”与“千克”的换算中,把吨换算成千克,是在数字的末尾加上3个0;
把千克换算成吨,是在数字的末尾去掉3个0。
7、相邻两个质量单位进率是1000。
1吨=1000千克 1千克=1000克
1000千克= 1吨 1000克=1千克
第五单元倍的认识
1、倍的意义:要知道两个数的关系,先确定谁是1倍数,然后把另一个数和它作比较,另一个数里有几个1倍数就是它的几倍。
2、求一个数是另一个数的几倍用除法: 一个数÷另一个数=倍数
3、求一个数的几倍是多少用乘法; 这个数×倍数=这个数的几倍
第六单元多位数乘一位数
1、多位数乘一位数(进位)的笔算方法:相同数位对齐,从个位乘起,用一位数分别去乘多位数每一位上的数,哪一位上乘得的数积满几十,就向前一位进几,与哪一位相乘,积就写在哪一位下面。
2、一个因数中间有0的乘法:
① 0和任何数相乘都得0;
② 因数中间有0,用一位数去乘多位数每一位数上的数,与中间的0相乘时,如果后面没有进上来的数,这一位上要用0来占位,如果有进上来的数必须加上。
③一个因数末尾有0的乘法的简便计算:笔算时,可以把一位数与多位数0前面那个数字对齐,再看多位数的末尾有几个0,就在积的末尾添上几个0.
3、① 0和任何数相乘都得0;② 1和任何不是0的数相乘还得原来的数。
4、三位数乘一位数:积有可能是三位数,也有可能是四位数。
公式:速度×时间=路程 每节车厢的人数×车厢的数量=全车的人数
路程÷时间=速度
路程÷速度=时间
5、(关于“大约)应用题:
问题中出现“大约”、“约”、“估一估”、 “估算”、 “估计一下”,条件中无论有没有大约都是求近似数,用估算。(估算时要用 ≈)
例:387×5≈
把387看作390(个位是7,四舍五入,7大于5所以进1,看作390)再算390×5=1950.
所以:387×5≈1950
第七单元 长方形和正方形
1、有4条直的边和4个角的封闭图形我们叫它四边形。
2、四边形的特点:有四条直的边,有四个角。
3、长方形的特点:长方形有两条长,两条宽,四个角都是直角,对边相等。
4、正方形的特点:有4个直角,4条边相等。
5、长方形和正方形是特殊的平行四边形。
6、平行四边形的特点:①对边相等、对角相等。
②平行四边形容易变形。(三角形不容易变形)
7、封闭图形一周的长度,就是它的周长。
8、公式:
长方形的周长=(长+宽)×2
变式:①长方形的长=周长÷2-宽
②长方形的宽=周长÷2-长
正方形的周长=边长×4
变式: 正方形的边长=周长÷4
第八单元 分数的初步认识
1、分数的意义:把一个整体平均分成若干份,表示几份就是这个整体的几分之几,所分的份数作分母,所取的份数作分子。
分子表示:其中的几份
分母表示:平均分成几份
2、几分之一:把一个物体或一个图形平均分成几份,每一份就是它的几分之一。
几分之几:把一个物体或一个图形平均分成几份,取其中的几份,就是这个物体或图形的几分之几。
3、把一个整体平均分得的份数越多,它的每一份所表示的数就越小。
4,比较大小的方法:
①当分子相同时,分母越小分数越大,分母越大分数越小。
② 当分母相同时,分子大的分数就大,分子小的分数就小。
5、分数加减法:
①相同分母的分数加、减法的计算方法:分母不变,分子相加、减。
② 1减几分之几的计算方法:计算1减几分之几时,先把1写成与减数分母相同的分数,再计算。(1可以看作所有分子分母相同的分数)
6,求一个数是另一个数的几分之几是多少的计算方法:
例:把12个圆的3/4有( )个圆;
分析:先找整体12;再找分母4,表示平均分成4份;求出12÷4=3,表示每一份有3个;最后找分子3,表示其中的3份,所以:3×3=9;所以把12个圆的3/4有9个圆。
金属质感分割线